Precise Point Positioning with Partial Ambiguity Fixing
<p>A flowchart of partial ambiguity resolution with predefined success rate and ratio value.</p> "> Figure 2
<p>Distribution of the global reference network and user stations. The blue dots are the reference stations used for UPDs estimation; the red stars are the user stations in the test. This figure is created with the GMT software by Wessel and Smith [<a href="#B37-sensors-15-13627" class="html-bibr">37</a>].</p> "> Figure 3
<p>Distribution of TTFF of static PPP by employing FAR and PAR, respectively.</p> "> Figure 4
<p>Distribution of TTFF of kinematic PPP by employing FAR and PAR, respectively.</p> "> Figure 5
<p>Success rate and reciprocal of the ratio test value for for static PPP for the observations of the 6th session from MAS1 on 24 January 2012, achieved by FAR (<b>Left</b>) and PAR (<b>Right</b>), respectively.</p> "> Figure 6
<p>Success rate and reciprocal of the ratio test value for kinematic PPP for the observations of the 6th session from MAS1 on 24 January 2012, achieved by FAR (<b>Left</b>) and PAR (<b>Right</b>), respectively.</p> "> Figure 7
<p>Distribution of fixing rate percentages of static PPP by employing FAR and PAR, respectively.</p> "> Figure 8
<p>Distribution of fixing rate percentages of kinematic PPP by employing FAR and PAR, respectively.</p> "> Figure 9
<p>Success rate (<b>Left</b>) and reciprocal of ratio test value (<b>Right</b>) of static PPP with PAR and FAR for the observations of the 4th session of the MOBS station on 25 January 2012.</p> "> Figure 10
<p>Success rate (<b>Left</b>) and reciprocal of ratio test value (<b>Right</b>) of kinematic PPP with PAR and FAR for the observations of the 4th session of the MOBS station on 25 January 2012.</p> "> Figure 11
<p>Coordinate biases of kinematic PPP for the observations of the 2nd session from station SANT on 26 January 2012, with respect to the coordinate benchmarks from IGS weekly solutions, with the FAR (<b>Top</b>) and PAR (<b>Bottom</b>) method, respectively.</p> "> Figure 12
<p>The average RMS of station position in east, north and up directions for kinematic PPP with the FAR and PAR methods.</p> ">
Abstract
:1. Introduction
2. PPP Ambiguity Resolution
2.1. Full Ambiguity Resolution for the PPP User
2.2. A Modified Partial Ambiguity Resolution Method for the PPP User
3. Experimental Section
4. Results and Discussion
4.1. Comparison of the Probability of Successful Fixing
PAR Method | Successful Fixing | Unsuccessful Fixing |
---|---|---|
WF | 74,018 | 13,955 |
Our | 87,195 | 778 |
4.2. Comparison of the Time to First Fix
4.3. Fixing Rate Comparison
4.4. Positioning Accuracy Comparison
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Teunissen, P.J.G.; Joosten, P.; Tiberius, C. Geometry-free ambiguity success rates in case of partial fixing. In Proceedings of the ION NTM, San Diego, CA, USA, 25–27 January 1999; pp. 201–207.
- Cao, W.; O’Keefe, K.; Cannon, M. Partial ambiguity fixing within multiple frequencies and systems. In Proceedings of the ION GNSS, Fort Worth, TX, USA, 25–28 September 2007; pp. 312–323.
- Henkel, P.; Günther, C. Partial integer decorrelation: Optimum trade-off between variance reduction and bias amplification. J. Geod. 2010, 84, 51–63. [Google Scholar] [CrossRef]
- Parkins, A. Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut. 2011, 15, 391–402. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y. Reliability of partial ambiguity fixing with multiple GNSS constellations. J. Geod. 2013, 87, 1–14. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Laurichesse, D.; Mercier, F.; Berthias, J.P.; Broca, P.; Cerri, L. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 2009, 56, 135–149. [Google Scholar] [CrossRef]
- Bertiger, W.; Desai, S.; Haines, B.; Harvey, N.; Moore, A.; Owen, S.; Weiss, J. Single receiver phase ambiguity resolution with GPS data. J. Geod. 2010, 84, 327–337. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Odijk, D.; Zhang, B. PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution. J. Aeronaut. Astronaut. Aviat. Ser. A 2010, 42, 223–230. [Google Scholar]
- Collins, P.; Bisnath, S.; Lahaye, F.; Héroux, P. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 2010, 57, 123–135. [Google Scholar] [CrossRef]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J. Zero-difference GPS ambiguity resolution at CNES-CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Guo, F. Ambiguity resolution in precise point positioning with hourly data for global single receiver. Adv. Space Res. 2013, 51, 153–161. [Google Scholar] [CrossRef]
- Geng, J.; Teferle, F.N.; Meng, X.; Dodson, A.H. Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Adv. Space Res. 2011, 47, 1664–1673. [Google Scholar] [CrossRef]
- Verhagen, S.; Teunissen, P.J.G.; van der Marel, H.; Li, B. GNSS ambiguity resolution: Which subset to fix? In Proceedings of the 2011 IGNSS Symposium, International Global Navigation Satellite Systems Society, Sydney, Australia, 15–17 November 2011; pp. 1–15.
- Shi, J.; Gao, Y. A fast integer ambiguity resolution method for PPP. In Proceedings of the ION GNSS, Nashville, TN, USA, 17–21 September 2012; pp. 3728–3734.
- Dow, J.M.; Neilan, R.E.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Blewitt, G. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res. 1989, 94, 10187–10203. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X. Improving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolution. J. Navig. 2012, 65, 513–529. [Google Scholar] [CrossRef]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386.
- Wei, M.; Schwarz, K.P. Fast ambiguity resolution using an integer nonlinear programming method. In Proceedings of the ION GNSS, Palm Springs, CA, USA, 12–15 September 1995; pp. 1101–1110.
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Ji, S.; Chen, W.; Ding, X.; Chen, Y.; Zhao, C.; Hu, C. Ambiguity validation with combined ratio test and ellipsoidal integer aperture estimator. J. Geod. 2010, 84, 597–604. [Google Scholar] [CrossRef]
- Verhagen, S. On the reliability of integer ambiguity resolution. Navigation 2005, 52, 99–110. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Success probability of integer GPS ambiguity rounding and bootstrapping. J. Geod. 1998, 72, 606–612. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Verhagen, S. GNSS Ambiguity Resolution: When and How to Fix or not to Fix? In Proceedings of the VI Hotine-Marussi Symposium of Theoretical and Computational Geodesy: Challenge and Role of Modern Geodesy, Wuhan, China, 29 May–2 June 2006; Volume 132, pp. 143–148.
- Frei, E.; Beutler, G. Rapid static positioning based on the fast ambiguity resolution approach FARA: Theory and first results. Manuscr. Geod. 1990, 15, 325–356. [Google Scholar]
- Teunissen, P.J.G.; Verhagen, S. The GNSS ambiguity ratio-test revisited: A better way of using it. Surv. Rev. 2009, 41, 138–151. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P. Assessment of correct fixing rate for precise point positioning ambiguity resolution on global scale. J. Geod. 2013, 87, 579–589. [Google Scholar] [CrossRef]
- Dach, R.; Brockmann, E.; Schaer, S.; Beutler, G.; Meindl, M.; Prange, L.; Bock, H.; Jaggi, A.; Ostini, L. GNSS processing at CODE: Status report. J. Geod. 2009, 83, 353–365. [Google Scholar] [CrossRef]
- Schmid, R.; Rothacher, M.; Thaller, D.; Steigenberger, P. Absolute phase center corrections of satellite and receiver antennas. GPS Solut. 2009, 9, 283–293. [Google Scholar] [CrossRef]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar]
- Saastamoinen, J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In the Use of Artificial Satellites for Geodesy, Geophysics Monograph Series; Henriksen, S., Mancini, A., Chovitz, B., Eds.; AGU: Washington, DC, USA, 1972; Volume 15, pp. 247–251. [Google Scholar]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Functions (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Urquhart, L.; Nievinski, F.G.; Santos, M. Ray-traced slant factors for mitigating the tropospheric delay at the observation level. J. Geod. 2012, 86, 149–160. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation. In Proceedings of the ION GNSS, Portland, OR, USA, 21–24 September 2010; pp. 161–171.
- Wessel, P.; Smith, W.H.F. New, improved version of generic mapping tools released. EOS Trans. AGU 1998, 79. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Zhang, X. Precise Point Positioning with Partial Ambiguity Fixing. Sensors 2015, 15, 13627-13643. https://doi.org/10.3390/s150613627
Li P, Zhang X. Precise Point Positioning with Partial Ambiguity Fixing. Sensors. 2015; 15(6):13627-13643. https://doi.org/10.3390/s150613627
Chicago/Turabian StyleLi, Pan, and Xiaohong Zhang. 2015. "Precise Point Positioning with Partial Ambiguity Fixing" Sensors 15, no. 6: 13627-13643. https://doi.org/10.3390/s150613627
APA StyleLi, P., & Zhang, X. (2015). Precise Point Positioning with Partial Ambiguity Fixing. Sensors, 15(6), 13627-13643. https://doi.org/10.3390/s150613627