Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications
<p>Concept of a surface plasmon resonance (SPR) biosensor: (<b>A</b>) Kretschmann geometry of the ATR method; (<b>B</b>) spectrum of reflected light before and after refractive index change; (<b>C</b>) analyte-biorecognition elements binding on SPR sensor surface and (<b>D</b>) refractive index changes caused by the molecular interactions in the reaction medium. Adapted from [<a href="#B30-sensors-15-10481" class="html-bibr">30</a>].</p> "> Figure 2
<p>General principle of surface plasmon resonance imaging (SPRI). (<b>Left</b>) The instrumentation of an SPR imaging system: The light source is a quartz tungsten-halogen lamp; the light is delivered through a liquid light guide to a goniometer arm, collimated by lenses, and passed through a narrow interference filter and a polarizer. A <span class="html-italic">p</span>-polarized and monochromatic light beam is then focused directly onto a prism coupler. The reflected light from the gold surface is captured by a monochromatic CCD camera. L2, L3 are lenses positioned in front of CCD for higher quality images. The images could be digitally stored using a B/W frame grabber and further analyzed using photography software; (<b>Right</b>) The analyte-ligand interaction shifts the SPR curve towards a higher angle (red to orange). Due to the measurement confinements (fixed wavelength and angle of incidence θ), changes in the reflectivity (Δ%R) at a single spot of the array can be simultaneously detected. Adapted from [<a href="#B32-sensors-15-10481" class="html-bibr">32</a>].</p> "> Figure 3
<p>High-throughput drug screening using an SPR imaging protein chip system. The bright image indicates protein-protein interaction on a gold surface. Upon the binding of an inhibitor to the target protein, protein-protein interactions are disrupted, resulting in changes in SPR imaging signal intensity and a darker image. Adapted from [<a href="#B62-sensors-15-10481" class="html-bibr">62</a>].</p> "> Figure 4
<p>Schematic representation of the PSA immunosensor based on PSA detection antibody-modified Au nanoparticles using surface plasmon resonance (SPR). For the PSA sandwich analysis, following PSA/tPSA bindingto the SPR sensor layer, 1.5 μg∙mL<sup>−1</sup> PSA detection antibody or Anti-PSA antibody conjugated AuNPs (20 nm, 5.1 × 1010 nanoparticles/mL or 40 nm, 5.1 × 1010 nanoparticles/mL) was injected on the surface. Adapted from [<a href="#B72-sensors-15-10481" class="html-bibr">72</a>].</p> "> Figure 5
<p>Schematic representation of DNA-directed immobilization. (<b>A</b>) Conjugation of four covalent conjugates (HA-HD) with the biotinylated antibodies anti-carcinoembryonic antigen (RAC), anti-ceruloplasmin (SAC), anti-complement-1-inactivator (SCI), and anti-lectin (GAL) to generate capture reagents A-RAC, B-SAC, C-SCI, and D-GAL. Adapted from [<a href="#B97-sensors-15-10481" class="html-bibr">97</a>]; (<b>B</b>) Conjugation of Streptavidin-Cy5 with biotinylated RAC, SAC, SCI and GAL for the use of a microscaled fluorescence immunoassay. Adapted from [<a href="#B97-sensors-15-10481" class="html-bibr">97</a>]; (<b>C</b>) DNA-directed immobilization of DNA-linked antibodies. c-A (Target sequence conjugated to anti-hCG): 5'-AGC GGA TAA CAA TTT CAC ACA GGA-3'; c-B (Target sequence conjugated to anti-hLH): 5'-AAC AGC TAT GAC CAT GAT TAC-3'; OEG, oligo (ethylene glycol). Adapted from [<a href="#B98-sensors-15-10481" class="html-bibr">98</a>].</p> "> Figure 6
<p>Schematic representation of direct immobilization of antibodies genetically modified with cysteines on a gold surface. A series of protein Gs containing two repeated IgG binding domains (B1 and B2) and a various numbers of cysteine amino acids, (Cys)<sub>1</sub>, (Cys)<sub>2</sub>, and (Cys)<sub>3</sub>, were genetically constructed, expressed/purified from <span class="html-italic">E. coli</span>, and subsequently analyzed using SPR biosensor. Adapted from [<a href="#B110-sensors-15-10481" class="html-bibr">110</a>].</p> "> Figure 7
<p>Schematic diagram of an immunochemical molecular recognition to illustrate the utility of Au colloid-enhanced biosensing. Two strategies for particle-enhanced SPR immunosensing are described: (<b>A</b>) Direct binding of the antigen-Au complex to an antibody-modified surface; (<b>B</b>) Antibody-modified surface followed by binding of a free antigen and then a secondary antibody-Au conjugate. Adapted from [<a href="#B112-sensors-15-10481" class="html-bibr">112</a>].</p> "> Figure 8
<p>Strategy for detecting SEB in buffer and stool using antibody-coated magnetic nanobeads. (<b>A</b>) Steps for processing samples with colloidal immunomagnetic beads (antibody-coated superparamagnetic nanobeads). Anti-SEB antibody-modified nanobeads were mixed with solutions containing the target antigen (SEB) prior to the SPR measurement; (<b>B</b>) SPR detection of staphylococcal enterotoxin B (SEB) in buffer (663 RIU), in stool (365 RIU), and unprocessed (7 RIU). Adapted from [<a href="#B115-sensors-15-10481" class="html-bibr">115</a>].</p> "> Figure 9
<p>The configuration of the proposed graphene-on-gold surface plasmon resonance biosensor based on generalized N-Layer model, where the gold film is deposited on top of a SF10 glass prism. A polychromatic light wave passes through the prism and is internally reflected on the prism-gold interface, creating an evanescent wave which penetrate the metal film (50 nm) and propagate along the x direction with propagation constant. The light propagation constant matches the surface plasmon polariton (SPP) propagation constant across the interface by controlling the incident angle θ. Plots of totally reflected intensity <span class="html-italic">versus</span> incident angle yield a peak, which is known as SPR angle. The graphene-on-gold surface plasmon resonance: prism | Au (50 nm) | graphene (L × 0.34 nm) | sensing medium, where L is the number of graphene layers, and Z<sub>0</sub> = 100 nm is the thickness of the biomolecule layer. Adapted from [<a href="#B116-sensors-15-10481" class="html-bibr">116</a>].</p> "> Figure 10
<p>SPR assay for ATP detection amplified by DNA-based hybridization chain reaction (HCR). (<b>A</b>) The S1-magnetic bead conjugates were prepared by direct immobilization of an amine-modified ATP aptamer linked to an activated carboxylate group on magnetic beads through the EDC/NHS chemistry, and then hybridized with its complementary oligonucleotide S2; (<b>B</b>) The strategy of continuous SPR monitoring of trigger DNA on a DNA chip array. Following a magnetic separation from the solution, the gold surface, on which the thiolated capture DNA was immobilized through S-Au bond, was treated with the sample containing S2. The released S2 functioned as trigger DNA to bind to the cohesive end of H1 in the presence of ATP. Adapted from [<a href="#B123-sensors-15-10481" class="html-bibr">123</a>].</p> "> Figure 11
<p>General principle of the objective-type SPRI setup. The optical configuration of the SPR microscope. Adapted from [<a href="#B133-sensors-15-10481" class="html-bibr">133</a>].</p> ">
Abstract
:1. Introduction
2. Operating Principle of SPR Biosensors
2.1. General Principle of SPR
2.2. SPR Imaging Principle
3. Applications of SPR-Based Biosensors
3.1. Biomedical Applications
3.1.1. Interaction Analyses
3.1.2. Conformational Change Studies
3.1.3. Mutation Detection
3.2. High-Throughput Screening (HTS)
3.3. Proteomics Researches
3.3.1. Tumor-Associated DNA Markers
3.3.2. Disease-Related Protein Biomarkers
3.4. Cellular Analysis and Cell-Based Detection
4. Immobilization of Biomolecules and Signal Amplification in SPR
4.1. Immobilization of Biomolecules
4.1.1. Covalent Coupling
4.1.2. Sequence-Specific DNA-Directed Immobilization of Proteins
4.1.3. Affinity Interactions
4.1.4. S-Au Bond in Cysteine-Gold Clusters
4.2. SPR Signal Amplification
4.2.1. Metal Nanoparticles
4.2.2. Magnetic Nanoparticles
4.2.3. Carbon-Based Nanomaterials
4.2.4. Other Approaches
5. Recent Advances of SPR Technology
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Stephanopoulos, N.; Francis, M.B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 2011, 7, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Tugarinov, V.; Kanelis, V.; Kay, L.E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 2006, 1, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Phelan, M.L.; Nock, S. Generation of bioreagents for protein chips. Proteomics 2003, 3, 2123–2134. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.-C.; Lai, W.-P.; Leung, Y.-C.; Lo, S.C.-L.; Wong, M.-S.; Yang, M. Study of substrate-enzyme interaction between immobilized pyridoxamine and recombinant porcine pyridoxal kinase using surface plasmon resonance biosensor. Biochim. Biophys. Acta 2002, 1596, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.P.; Grimsrud, T.E.; Liles, M.R.; Goodman, R.M.; Corn, R.M. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 2001, 73, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Rodda, E.; Furlong, D.N.; Niikura, K.; Okahata, Y. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic Acid sensor development. Anal. Chem. 1997, 69, 2043–2049. [Google Scholar] [PubMed]
- Arwin, H.; Poksinski, M.; Johansen, K. Total internal reflection ellipsometry: Principles and applications. Appl. Opt. 2004, 43, 3028. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, K.; Jeong, E.-J.; Shin, Y.-B.; Chung, B.H. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein. Anal. Biochem. 2006, 351, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Madeira, A.; Vikeved, E.; Nilsson, A.; Sjögren, B.; Andrén, P.E.; Svenningsson, P. Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry. Curr. Protoc. Protein Sci. 2011, 65, 19.21.1–19.21.9. [Google Scholar]
- Majka, J.; Speck, C. Analysis of protein-DNA interactions using surface plasmon resonance. Adv. Biochem. Eng. Biotechnol. 2007, 104, 13–36. [Google Scholar] [PubMed]
- Teh, H.F.; Peh, W.Y.X.; Su, X.; Thomsen, J.S. Characterization of protein—DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 2007, 46, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Geitmann, M.; Danielson, U.H. Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal. Biochem. 2004, 332, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Salamon, Z.; Cowell, S.; Varga, E.; Yamamura, H.I.; Hruby, V.J.; Tollin, G. Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: New structural insights into receptor-ligand interactions. Biophys. J. 2000, 79, 2463–2474. [Google Scholar] [CrossRef] [PubMed]
- Rich, R.L.; Hoth, L.R.; Geoghegan, K.F.; Brown, T.A.; LeMotte, P.K.; Simons, S.P.; Hensley, P.; Myszka, D.G. Kinetic analysis of estrogen receptor/ligand interactions. Proc. Natl. Acad. Sci. USA 2002, 99, 8562–8567. [Google Scholar] [CrossRef] [PubMed]
- Baron, O.L.; Pauron, D.; Antipolis, S. Protein-lipid interaction analysis by surface plasmon resonance (SPR). Bio-Protocol 2014, 4, 1–8. [Google Scholar]
- Erb, E.M.; Chen, X.; Allen, S.; Roberts, C.J.; Tendler, S.J.; Davies, M.C.; Forsén, S. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal. Biochem. 2000, 280, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Beccati, D.; Halkes, K.M.; Batema, G.D.; Guillena, G.; Carvalho de Souza, A.; van Koten, G.; Kamerling, J.P. SPR studies of carbohydrate-protein interactions: Signal enhancement of low-molecular-mass analytes by organoplatinum(II)-labeling. Chembiochem 2005, 6, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, L.; Zhou, B.; Wang, X.; Liu, G.; Liu, W.; Wang, P. Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2014, 121, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Besenicar, M.; Macek, P.; Lakey, J.H.; Anderluh, G. Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 2006, 141, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, H.; Suehiro, N.; Tomoo, K.; Muto, S.; Takahashi, T.; Tsukamoto, T.; Ohmori, T.; Natsuaki, T. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie 2006, 88, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Buijs, J.; Franklin, G.C. SPR-MS in functional proteomics. Brief. Funct. Genomic. Proteomic. 2005, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Nedelkov, D.; Nelson, R.W. Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): Exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes. Biosens. Bioelectron. 2001, 16, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; D’Agata, R.; Rizzarelli, E.; Spoto, G.; D’Andrea, L.; Pedone, C.; Picardi, A.; Romanelli, A.; Fragai, M.; Yeo, K.J. Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. J. Mass Spectrom. 2005, 40, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A. Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 2003, 377, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Mullett, W.M.; Lai, E.P.; Yeung, J.M. Surface plasmon resonance-based immunoassays. Methods 2000, 22, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Kukanskis, K.; Elkind, J.; Melendez, J.; Murphy, T.; Miller, G.; Garner, H. Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Anal. Biochem. 1999, 274, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Lowe, P.A.; Clark, T.J.; Davies, R.J.; Edwards, P.R.; Kinning, T.; Yeung, D. New approaches for the analysis of molecular recognition using the IAsys evanescent wave biosensor. J. Mol. Recognit. 1998, 11, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef] [PubMed]
- De Feijter, J.A.; Benjamins, J.; Veer, F.A. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 1978, 17, 1759–1772. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Cheng, Q. Label-free detection methods for protein microarrays. Proteomics 2006, 6, 5493–5503. [Google Scholar] [CrossRef] [PubMed]
- Shumaker-Parry, J.S.; Campbell, C.T. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 2004, 76, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Zeder-Lutz, G.; Zuber, E.; Witz, J.; van Regenmortel, M.H. Thermodynamic analysis of antigen-antibody binding using biosensor measurements at different temperatures. Anal. Biochem. 1997, 246, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.V.; Roger MacKenzie, C. Characterization of protein-glycolipid recognition at the membrane bilayer. J. Mol. Recognit. 1999, 12, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Hansson, A.; Löfås, S.; Williams, D.H. A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 2000, 277, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Williams, D.H. Kinetic analysis of antibody-antigen interactions at a supported lipid monolayer. Anal. Biochem. 1999, 276, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Try, A.C.; Carroll, J.; Ellar, D.J.; Williams, D.H. Surface plasmon resonance analysis at a supported lipid monolayer. Biochim. Biophys. Acta—Biomembr. 1998, 1373, 101–111. [Google Scholar] [CrossRef]
- Saenko, E.; Sarafanov, A.; Greco, N.; Shima, M.; Loster, K.; Schwinn, H.; Josic, D. Use of surface plasmon resonance for studies of protein-protein and protein-phospholipid membrane interactions. Application to the binding of factor VIII to von Willebrand factor and to phosphatidylserine-containing membranes. J. Chromatogr. A 1999, 852, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.L.; Courtenay, E.S.; Myszka, D.G. Surface plasmon resonance characterization of drug/liposome interactions. Anal. Biochem. 2002, 310, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.B.; Silin, V.; Plant, A.L. Self assembly driven by hydrophobic interactions at alkanethiol monolayers: Mechanisms of formation of hybrid bilayer membranes. Biophys. Chem. 1998, 75, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, P. Surface plasmon resonance: Applications in understanding receptor-ligand interaction. Appl. Biochem. Biotechnol. 2005, 126, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Wegner, G.J.; Wark, A.W.; Lee, H.J.; Codner, E.; Saeki, T.; Fang, S.; Corn, R.M. Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal. Chem. 2004, 76, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
- Sibille, P.; Strosberg, A.D. A FIV epitope defined by a phage peptide library screened with a monoclonal anti-FIV antibody. Immunol. Lett. 1997, 59, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.; Persson, B.; Uhlén, M.; Nygren, P.A. Real-time monitoring of DNA manipulations using biosensor technology. Anal. Biochem. 1995, 224, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Misono, T.S.; Kumar, P.K.R. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. 2005, 342, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, J.P.; Han, S.J.; Sim, S.J. Aptamer biosensor for lable-free detection of human immunoglobulin E based on surface plasmon resonance. Sens. Actuators B Chem. 2009, 139, 471–475. [Google Scholar] [CrossRef]
- Bini, A.; Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Development of an optical RNA-based aptasensor for C-reactive protein. Anal. Bioanal. Chem. 2008, 390, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Luzi, E.; Mascini, M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005, 67, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Youn, B.-S.; Park, J.W.; Niazi, J.H.; Kim, Y.S.; Gu, M.B. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal. Chem. 2008, 80, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Lao, A.I.K.; Su, X.; Aung, K.M.M. SPR study of DNA hybridization with DNA and PNA probes under stringent conditions. Biosens. Bioelectron. 2009, 24, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Ratilainen, T.; Holmén, A.; Tuite, E.; Nielsen, P.E.; Nordén, B. Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 2000, 39, 7781–7791. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rivas, G.; Cai, X.; Chicharro, M.; Parrado, C.; Dontha, N.; Begleiter, A.; Mowat, M.; Palecek, E.; Nielsen, P.E. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal. Chim. Acta 1997, 344, 111–118. [Google Scholar] [CrossRef]
- D’Agata, R.; Spoto, G. Artificial DNA and surface plasmon resonance. Artif. DNA. PNA XNA 2012, 3, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Sota, H.; Hasegawa, Y.; Iwakura, M. Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal. Chem. 1998, 70, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Mannen, T.; Yamaguchi, S.; Honda, J.; Sugimoto, S.; Kitayama, A.; Nagamune, T. Observation of charge state and conformational change in immobilized protein using surface plasmon resonance sensor. Anal. Biochem. 2001, 293, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jung, S.O.; Park, K.; Jeong, E.-J.; Joung, H.-A.; Kim, T.-H.; Seol, D.-W.; Chung, B.H. Detection of Bax protein conformational change using a surface plasmon resonance imaging-based antibody chip. Biochem. Biophys. Res. Commun. 2005, 338, 1834–1838. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, Y.; Lei, Y.; Zhao, D.; Yuan, T.; Zhang, D.; Cheng, W.; Ding, S. Surface plasmon resonance biosensor for label-free and highly sensitive detection of point mutation using polymerization extension reaction. Colloids Surf. B. Biointerfaces 2014, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Kim, S.K.; Park, K.; Yi, S.Y.; Park, H.-J.; Lyu, H.-K.; Kim, M.; Chung, B.H. Detection of mutant p53 using field-effect transistor biosensor. Anal. Chim. Acta 2010, 665, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.A.; Corn, R.M. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 2003, 57, 320A–332A. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G. Surface plasmon resonance imaging. Anal. Bioanal. Chem. 2004, 379, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.O.; Ro, H.S.; Kho, B.H.; Shin, Y.B.; Kim, M.G.; Chung, B.H. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors. Proteomics 2005, 5, 4427–4431. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Han, S.H.; Shin, Y. Surface plasmon resonance biosensor chips. Biochip J. 2007, 1, 81–89. [Google Scholar]
- Krishnamoorthy, G.; Bianca Beusink, J.; Schasfoort, R.B.M. High-throughput surface plasmon resonance imaging-based biomolecular kinetic screening analysis. Anal. Methods 2010, 2, 1020. [Google Scholar] [CrossRef]
- Maillart, E.; Brengel-Pesce, K.; Capela, D.; Roget, A.; Livache, T.; Canva, M.; Levy, Y.; Soussi, T. Versatile analysis of multiple macromolecular interactions by SPR imaging: Application to p53 and DNA interaction. Oncogene 2004, 23, 5543–5550. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.; Junker, H.-D.; Schmidt, K.; Sekul, R. SPR-based fragment screening: Advantages and applications. Curr. Top. Med. Chem. 2007, 7, 1630–1642. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wark, A.W.; Lee, H.J.; Corn, R.M. Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal. Chem. 2006, 78, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Narod, S.A.; Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 2004, 4, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Minunni, M.; Wilson, P.; Zhang, J.; Turner, A.P.F.; Mascini, M. Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosens. Bioelectron. 2005, 20, 1939–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Wu, M.; Xia, N.; Wang, J.; Zhou, F. Simultaneous and label-free determination of wild-type and mutant p53 at a single surface plasmon resonance chip preimmobilized with consensus DNA and monoclonal antibody. Anal. Chem. 2009, 81, 8441–8446. [Google Scholar] [CrossRef] [PubMed]
- Uludag, Y.; Tothill, I.E. Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal. Chem. 2012, 84, 5898–5904. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chiu, N.-F.; Lin, D.S.; Chu-Su, Y.; Liang, Y.-H.; Lin, C.-W. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal. Chem. 2010, 82, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.-P.; Yuan, R.; Chai, Y.-Q. Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry. Bioprocess Biosyst. Eng. 2006, 28, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-H.; Jung, J.-W.; Suh, I.-B.; Yuk, J. S.; Kim, W.-J.; Choi, E.Y.; Kim, Y.-M.; Ha, K.-S. Analysis of C-reactive protein on amide-linked N-hydroxysuccinimide-dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis. Anal. Chem. 2007, 79, 5703–5710. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.S.; Sullivan, B.A.; Walker, K.; Hawk, H.; Sullivan, B.P.; Noe, L.J. Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl. Spectrosc. 2006, 60, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Su, X.; Tjong, V.; Knoll, W. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding. Biosens. Bioelectron. 2007, 22, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- Neo, S.J.; Su, X.; Thomsen, J.S. Surface plasmon resonance study of cooperative interactions of estrogen receptor alpha and transcriptional factor Sp1 with composite DNA elements. Anal. Chem. 2009, 81, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Oliver, R.; Li, J.; Lee, J.; Aguilar, M.; Wu, Y. Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Biosens. Bioelectron. 2007, 23, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Gillis, E.H.; Gosling, J.P.; Sreenan, J.M.; Kane, M. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J. Immunol. Methods 2002, 267, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hide, M.; Tsutsui, T.; Sato, H.; Nishimura, T.; Morimoto, K.; Yamamoto, S.; Yoshizato, K. Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal. Biochem. 2002, 302, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Yanase, Y.; Suzuki, H.; Tsutsui, T.; Hiragun, T.; Kameyoshi, Y.; Hide, M. The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens. Bioelectron. 2007, 22, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Hiragun, T.; Tsutsui, T.; Yanase, Y.; Suzuki, H.; Hide, M. Surface plasmon resonance biosensor detects the downstream events of active PKCbeta in antigen-stimulated mast cells. Biosens. Bioelectron. 2008, 23, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Baumgarten, S.; Robelek, R. Surface plasmon resonance (SPR) sensors for the rapid, sensitive detection of the cellular response to osmotic stress. Sens. Actuators B Chem. 2011, 156, 798–804. [Google Scholar] [CrossRef]
- Robelek, R.; Wegener, J. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosens. Bioelectron. 2010, 25, 1221–1224. [Google Scholar] [CrossRef] [PubMed]
- Hiragun, T.; Yanase, Y.; Kose, K.; Kawaguchi, T.; Uchida, K.; Tanaka, S.; Hide, M. Surface plasmon resonance-biosensor detects the diversity of responses against epidermal growth factor in various carcinoma cell lines. Biosens. Bioelectron. 2012, 32, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lei, T.; Ino, K.; Matsue, T.; Tao, N.; Li, C.-Z. Real-time monitoring biomarker expression of carcinoma cells by surface plasmon resonance biosensors. Chem. Commun. (Camb). 2012, 48, 10389–10391. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.-Y.; Choi, H.; Shin, Y.-B.; Jung, S.O.; Kim, M.-G.; Chung, B.H. On-chip Escherichia coli culture, purification, and detection of expressed proteins. Eur. Biophys. J. 2006, 35, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kyratzis, I. Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—A critical assessment. Bioconjug. Chem. 2008, 19, 1945–1950. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 2002, 54, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Mädler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities. J. Mass Spectrom. 2009, 44, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ho, S.O.; Gassman, N.R.; Korlann, Y.; Landorf, E.V.; Collart, F.R.; Weiss, S. Efficient site-specific labeling of proteins via cysteines. Bioconjug. Chem. 2008, 19, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.; Ramos, M.J. Theoretical insights into the mechanism for thiol/disulfide exchange. Chemistry 2004, 10, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, C.M. The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol. 2002, 20, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, C.M. Semi-synthetic DNA-protein conjugates: Novel tools in analytics and nanobiotechnology. Biochem. Soc. Trans. 2004, 32, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Tsukiji, S.; Nagamune, T. Site-specific conjugation of oligonucleotides to the C-terminus of recombinant protein by expressed protein ligation. Bioorg. Med. Chem. Lett. 2004, 14, 2407–2410. [Google Scholar] [CrossRef] [PubMed]
- Wacker, R.; Niemeyer, C.M. DDI-microFIA—A readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins. Chembiochem 2004, 5, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Boozer, C.; Ladd, J.; Chen, S.; Jiang, S. DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 2006, 78, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Pack, S.P.; Yoo, Y.J. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface. Biochem. Biophys. Res. Commun. 2005, 329, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.-J.; Jeong, Y.S.; Park, K.; Yi, S.Y.; Ahn, J.; Chung, S.J.; Kim, M.; Chung, B.H. Directed immobilization of DNA-binding proteins on a cognate DNA-modified chip surface. J. Biotechnol. 2008, 135, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Furukawa, K.; Sarai, A.; Nakamura, H. Kinetic analysis of DNA binding by the c-Myb DNA-binding domain using surface plasmon resonance. FEBS Lett. 1999, 454, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.-H.; Paek, E.-H.; Lee, H.; Kang, J.Y.; Kim, T.S.; Paek, S.-H. Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Anal. Biochem. 2007, 365, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E.P.; Christopoulos, T.K. The biotin-(strept)avidin system: Principles and applications in biotechnology. Clin. Chem. 1991, 37, 625–636. [Google Scholar] [PubMed]
- Jung, J.-M.; Shin, Y.-B.; Kim, M.-G.; Ro, H.-S.; Jung, H.-T.; Chung, B.H. A fusion protein expression analysis using surface plasmon resonance imaging. Anal. Biochem. 2004, 330, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Patrie, S.M.; Mrksich, M. Self-assembled monolayers for MALDI-TOF mass spectrometry for immunoassays of human protein antigens. Anal. Chem. 2007, 79, 5878–5887. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.H.; Jung, S.O.; Lee, J.M.; Lee, K.Y.; Lee, Y.; Park, J.S.; Chung, B.H. Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface. Anal. Chem. 2007, 79, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; McBean, N.; Schultz, J.S.; Yan, Y.; Mulchandani, A.; Chen, W. Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J. Am. Chem. Soc. 2006, 128, 676–677. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Lee, J.M.; Jung, H.; Chung, B.H. Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal. Chem. 2007, 79, 6534–6541. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, J.M.; Jung, Y.; Habtemariam, T.; Salah, A.W.; Fermin, C.D.; Kim, M. Combination of cysteine- and oligomerization domain-mediated protein immobilization on a surface plasmon resonance (SPR) gold chip surface. Analyst 2011, 136, 2506–2511. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Park, H.K.; Jung, Y.; Kim, J.K.; Jung, S.O.; Chung, B.H. Direct immobilization of protein g variants with various numbers of cysteine residues on a gold surface. Anal. Chem. 2007, 79, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Lyon, L.A.; Peña, D.J.; Natan, M.J. Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence. J. Phys. Chem. B 1999, 103, 5826–5831. [Google Scholar] [CrossRef]
- Lyon, L.A.; Musick, M.D.; Natan, M.J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998, 70, 5177–5183. [Google Scholar] [CrossRef] [PubMed]
- Luckarift, H.R.; Balasubramanian, S.; Paliwal, S.; Johnson, G.R.; Simonian, A.L. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids Surf. B Biointerfaces 2007, 58, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Lu, Y.; Chen, J.; Zheng, R.; Wang, P.; Ming, H. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 2008, 16, 18599–18604. [Google Scholar] [CrossRef] [PubMed]
- Soelberg, S.D.; Stevens, R.C.; Limaye, A.P.; Furlong, C.E. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal. Chem. 2009, 81, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H.; Song, D. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 2013, 45, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Cittadini, M.; Bersani, M.; Perrozzi, F.; Ottaviano, L.; Wlodarski, W.; Martucci, A. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon N. Y. 2014, 69, 452–459. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Lee, E.G.; Park, K.M.; Jeong, J.Y.; Lee, S.H.; Baek, J.E.; Lee, H.W.; Jung, J.K. Carbon nanotube-assisted enhancement of surface plasmon resonance signal. Anal. Biochem. 2011, 408, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Huang, J.; Chuai, Z.; Chen, D.; Zhu, X.; Wang, H.; Peng, J.; Wu, H.; Huang, Q.; Fu, W. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor. Biosens. Bioelectron. 2014, 62, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hou, Y.; Qi, F.; Zhang, J.; Koh, K.; Shen, Z.; Li, G. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens. Bioelectron. 2014, 61, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Wang, L.; Wei, Q. A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chem. Commun. (Camb). 2014, 50, 5049–5052. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.-H.; Liang, R.-P.; Yu, X.-D.; Huang, C.-F.; Zhang, L.; Qiu, J.-D. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal. Chem. 2015, 87, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Gao, Z. A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 2014, 8, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Li, Y.; Wark, A.W.; Corn, R.M. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem. 2005, 77, 5096–5100. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, S.; Wei, S.-C.; Chu-Su, Y.; Lin, C.-W. Surface plasmon resonance detection of silver ions and cysteine using DNA intercalator-based amplification. Anal. Bioanal. Chem. 2012, 402, 2827–2835. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, T.T.; Lee, H.J.; Corn, R.M. Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J. Am. Chem. Soc. 2004, 126, 4086–4087. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, X.; Wang, K.; Tan, W.; Li, W.; Tang, H.; Li, H. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res. 2009, 37, e20. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.-H.; Liang, R.-P.; Huang, C.-F.; Zhang, L.; Qiu, J.-D. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Anal. Chim. Acta 2015, 871, 28–34. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Liu, L.; Qiao, W.; Zhang, S. Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem. Commun. (Camb). 2014, 50, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.M.A.; Denyer, M.C.T.; Youseffi, M.; Britland, S.T.; Liu, S.; See, C.W.; Somekh, M.G.; Zhang, J. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J. Struct. Biol. 2008, 164, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yu, F.; Zare, R.N. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 2007, 79, 2979–2983. [Google Scholar] [CrossRef] [PubMed]
- Sefat, F.; Denyer, M.C.T.; Youseffi, M. Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins. J. Microsc. 2011, 241, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Plasmonic imaging and detection of single DNA molecules. ACS Nano 2014, 8, 3427–3433. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shan, X.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Liu, Q.; Wu, J.; Tao, N. Mapping single-cell-substrate interactions by surface plasmon resonance microscopy. Langmuir 2012, 28, 13373–13379. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y.; Wang, S.; Nagaraj, V.J.; Liu, Q.; Wu, J.; Tao, N. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat. Chem. 2012, 4, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Schasfoort, R.; Schuck, P. Future trends in SPR technology. Handb. Surf. Plasmon. 2008, 354–394. [Google Scholar]
- Soelberg, S.D.; Chinowsky, T.; Geiss, G.; Spinelli, C.B.; Stevens, R.; Near, S.; Kauffman, P.; Yee, S.; Furlong, C.E. A portable surface plasmon resonance sensor system for real-time monitoring of small to large analytes. J. Ind. Microbiol. Biotechnol. 2005, 32, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.-B.; Kim, H. M.; Jung, Y.; Chung, B.H. A new palm-sized surface plasmon resonance (SPR) biosensor based on modulation of a light source by a rotating mirror. Sens. Actuators B Chem. 2010, 150, 1–6. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481-10510. https://doi.org/10.3390/s150510481
Nguyen HH, Park J, Kang S, Kim M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors. 2015; 15(5):10481-10510. https://doi.org/10.3390/s150510481
Chicago/Turabian StyleNguyen, Hoang Hiep, Jeho Park, Sebyung Kang, and Moonil Kim. 2015. "Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications" Sensors 15, no. 5: 10481-10510. https://doi.org/10.3390/s150510481
APA StyleNguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors, 15(5), 10481-10510. https://doi.org/10.3390/s150510481