A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties
"> Figure 1
<p>Experimental system of measurement.</p> "> Figure 2
<p>Evolution of TA for musts of 2011 harvest. (<b>a</b>) Red musts; (<b>b</b>) White musts.</p> "> Figure 3
<p>Evolution of TA for musts of 2012 harvest. (<b>a</b>) Red musts; (<b>b</b>) White musts.</p> "> Figure 4
<p>Evolution of ºBrix for musts of 2011 harvest. (<b>a</b>) Red musts; (<b>b</b>) White musts.</p> "> Figure 5
<p>Evolution of °Brix for musts of 2012 harvest. (<b>a</b>) Red musts; (<b>b</b>) White musts.</p> "> Figure 6
<p>PCA plot for different grades of grape ripening in 2011. (<b>a</b>) Chenin Blanc; (<b>b</b>) Barbera.</p> "> Figure 7
<p>PCA analysis for the samples collected on 22 of August of 2011. (<b>a</b>) White varieties; (<b>b</b>) Red varieties.</p> "> Figure 8
<p>PCA plot for different grades of grape ripening in 2012. (<b>a</b>) Chenin Blanc; (<b>b</b>) Barbera.</p> "> Figure 9
<p>PCA analysis for the samples collected in 2012. (<b>a</b>) 14 of September for white varieties; (<b>b</b>) 10 of September for red varieties.</p> "> Figure 10
<p>r values for the canonical correlation between grape must parameters and sensor responses for grape must varieties of 2011. (<b>a</b>) Red varieties; (<b>b</b>) White varieties.</p> "> Figure 11
<p>r values for the canonical correlation between grape must parameters and sensor responses for grape must varietiesof 2012. (<b>a</b>) Red varieties; (<b>b</b>) White varieties.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples Measured
Grape Varieties | Month-Day | Year |
---|---|---|
Barbera | 8-16, 8-22, 8-16, 8-29, 9-12 | 2011 |
Petit Verdot | 8-22, 8-29, 9-5, 9-12, 9-19 | 2011 |
Tempranillo | 8-11, 8-16, 8-22, 8-29, 9-5, 9-12 | 2011 |
Touriga | 8-16, 8-22, 8-29, 9-5, 9-12 | 2011 |
Malvar | 8-16, 8-22, 8-29, 9-1 | 2011 |
Malvasía | 8-16, 8-22, 8-29, 9-6 | 2011 |
Chenin Blanc | 8-16, 8-22, 8-29, 9-5, 9-12 | 2011 |
Sauvignon Blanc | 8-11, 8-16, 8-22 | 2011 |
Barbera | 8-21, 9-10, 9-17, 9-25 | 2012 |
Petit Verdot | 9-3, 9-10, 9-17, 9-24 | 2012 |
Tempranillo | 8-14, 8-21, 8-27, 9-3 | 2012 |
Touriga | 8-21, 8-27, 9-3, 9-10, 9-17 | 2012 |
Malvar | 8-14, 8-21, 8-27, 9-3, 9-12 | 2012 |
Malvasia | 8-14, 8-21, 8-27, 8-30 | 2012 |
Chenin Blanc | 8-28, 9-3, 9-10 | 2012 |
Sauvignon Blanc | 8-14, 8-21, 8-27, 9-5 | 2012 |
Grape Varieties | Month-Day | Year |
---|---|---|
Barbera | 8-16, 8-22, 9-5, 9-14 | 2011 |
Petit Verdot | 8-22, 9-12, 9-22 | 2011 |
Tempranillo | 8-16, 8-22, 9-5, 9-14 | 2011 |
Touriga | 8-16, 8-28, 9-5, 9-14 | 2011 |
Malvar | 8-16, 8-22, 9-1 | 2011 |
Malvasía | 8-16, 8-22, 9-6 | 2011 |
Chenin Blanc | 8-16, 8-22, 9-5, 9-12 | 2011 |
Sauvignon Blanc | 8-16, 8-22, 9-25 | 2011 |
Barbera | 8-21, 9-10, 9-17, 9-25 | 2012 |
Petit Verdot | 9-10, 9-18, 9-24 | 2012 |
Tempranillo | 8-14, 9-3 | 2012 |
Touriga | 8-21, 9-10, 9-17 | 2012 |
Malvar | 8-14, 9-3 | 2012 |
Malvasia | 8-14, 8-31 | 2012 |
Chenin Blanc | 9-3, 9-10 | 2012 |
Sauvignon Blanc | 8-14, 9-4 | 2012 |
2.2. Physicochemical Parameters
2.3. System of Measurement with Electronic Nose
2.4. Measurement Procedure
2.5. Data Treatment
3. Results and Discussion
Red Grape Varieties | Classification | White Grape Varieties | Classification |
---|---|---|---|
Barbera | 98.8% | Malvar | 95.5% |
Petit Verdot | 85.5% | Malvasía | 98.0% |
Tempranillo | 98.9% | Chenin Blanc | 94.8% |
Touriga | 99.1% | Sauvignon Blanc | 92.5% |
Red Grape Varieties | Classification | White Grape Varieties | Classification |
---|---|---|---|
Barbera | 91.9% | Malvar | 100% |
Petit Verdot | 99.7% | Malvasía | 100% |
Tempranillo | 100% | Chenin Blanc | 100% |
Touriga | 98.6% | Sauvignon Blanc | 90% |
Can.Correl. No. | r | Brix | pH | AT | Az g/L | IMT |
---|---|---|---|---|---|---|
1 | 0.84 | 0.11 | ‒4.90 | ‒1.31 | ‒0.02 | 0.43 |
2 | 0.74 | 0.37 | 1.98 | ‒1.53 | 0.04 | ‒0.14 |
3 | 0.40 | 0.83 | ‒9.76 | 6.09 | ‒0.20 | 0.87 |
4 | 0.15 | 0.98 | ‒2.97 | 9.23 | 0.40 | 0.25 |
Can.Correl. No. | r | Brix | pH | AT | Az g/L | IMT |
---|---|---|---|---|---|---|
1 | 0.85 | 0.11 | 3.67 | ‒0.30 | ‒0.16 | ‒0.36 |
2 | 0.66 | 0.40 | 0.07 | ‒0.36 | ‒0.07 | ‒0.06 |
3 | 0.51 | 0.69 | 6.50 | ‒7.52 | 0.24 | ‒0.52 |
4 | 0.26 | 0.93 | ‒1.22 | 3.79 | 1.13 | 0.05 |
Can.Correl. No. | r | Brix | pH | AT | Az g/L | IMT |
---|---|---|---|---|---|---|
1 | 0.97 | 0.00 | ‒0.17 | ‒3.07 | 0.09 | 0.01 |
2 | 0.93 | 0.03 | ‒0.03 | 1.28 | ‒0.13 | 0.04 |
3 | 0.84 | 0.24 | ‒0.17 | 4.65 | ‒0.18 | 0.02 |
4 | 0.46 | 0.79 | ‒0.98 | ‒1.27 | ‒0.49 | 0.04 |
Can.Correl. No. | r | Brix | pH | AT | Az g/L | IMT |
---|---|---|---|---|---|---|
1 | 0.97 | 0.01 | ‒2.89 | 6.23 | 0.34 | 0.22 |
2 | 0.89 | 0.11 | ‒2.52 | 7.67 | 1.47 | 0.21 |
3 | 0.69 | 0.52 | 1.87 | ‒20.53 | 1.63 | ‒0.14 |
4 | 0.10 | 0.99 | ‒0.52 | 0.30 | 0.79 | 0.07 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meléndez, E.; Ortíz, M.C.; Sarabia, L.A.; Íñiguez, M.; Puras, P. Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties. Anal. Chim. Acta 2013, 761, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Bureau, S.M.; Razungles, A.L.; Baumes, R.L. The aroma of “Muscat of Frotignan” grape: Effect of the light environment of vine or brunch on volatiles and glycoconjugates. J. Sci. Food Agric. 2000, 80, 2012–2020. [Google Scholar] [CrossRef]
- Rocha, S.M.; Countinho, P.; Barros, A.; Delgadillo, I.; Coimbra, M.A. Establishment of the varietal volatile profile of musts from white Vitis vinifera L. varieties. J. Sci. Food Agric. 2007, 87, 1667–1676. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailóna, M.T. Evaluation of sensory parameters of grapes using near infrared spectroscopy. J. Food Eng. 2013, 118, 333–339. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science Principles, Practice, Perception Chemical Constituents of Grapes and Wine, 2nd ed.; Academic Press: London, UK, 2000; pp. 232–280. [Google Scholar]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Salinas, M.R.; Zalacain, A.; Pardo, F.; Alonso, G.L. Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening. J. Agric. Food Chem. 2004, 52, 4921–4827. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Santos, J.P.; Arroyo, T.; Aznar, M.; Cabellos, J.M.; Gil, M.; Horrillo, M.C. Correlating e-nose responses to wine sensorial descriptors and gas chromatography-mass spectrometry profiles using partial least squares regression analysis. Sens. Actuators B Chem. 2007, 127, 267–276. [Google Scholar]
- Capone, S.; Tufariello, M.; Francioso, L.; Montagna, G.; Casino, F.; Leone, A.; Siciliano, P. Aroma analysis by GC/MS and electronic nose dedicated to Negroamaro and Primitivo typical Italian Apulian wines. Sens. Actuators B Chem. 2013, 179, 259–269. [Google Scholar] [CrossRef]
- Arroyo, T.; Lozano, J.; Cabellos, J.M.; Gil-Díaz, M.; Santos, J.P.; Horrillo, M.C. Evaluation of Wine Aromatic Compounds by a Sensory Human Panel and an Electronic Nose. J. Agric. Food Chem. 2009, 57, 11543–11549. [Google Scholar] [CrossRef]
- Lopez de Lerma, N.; Bellincontro, A.; Mencarelli, F.; Moreno, J.; Peinado, R.A. Use of electronic nose, validated by GC–MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem. 2012, 130, 447–452. [Google Scholar] [CrossRef]
- Athamneh, A.I.; Zoecklein, B.W.; Mallikarjunan, K. Electronic nose evaluation of cabernet sauvignon fruit maturity. J. Wine Res. 2008, 19, 69–80. [Google Scholar] [CrossRef]
- Lopez de Lerma, N.; Moreno, J.; Peinado, R.A. Determination of the optimum sun-drying time for Vitis vinifera L. cv. Tempranillo grapes by e-nose analysis and characterization of their volatile composition. Food Bioprocess Biotech. 2014, 7, 732–740. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed]
- Santonico, M.; Bellincontro, A.; de Santis, D.; di Natale, C.; Mencarelli, F. Electronic nose to study postharvest dehydration of wine grapes. Food Chem. 2010, 121, 789–796. [Google Scholar] [CrossRef]
- Devarajan, Y.S.; Zoecklein, B.W.; Mallikarjunan, M.; Gardner, D.M. Electronic nose evaluation of the effects of canopy side on Cabernet franc (Vitis vinifera L.) grape and wine volatiles. Am. J. Enol. Vitic. 2011, 62, 73–80. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.P.; Horrillo, M.C. Classification of white wine aromas with an electronic nose. Talanta 2005, 67, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.P.; Fernández, M.J.; Fontecha, J.L.; Lozano, J.; Aleixandre, M.; García, M.; Gutiérrez, J.; Horrillo, M.C. SAW sensor array for wine discrimination. Sens. Actuators B Chem. 2005, 107, 291–295. [Google Scholar]
- García, M.; Fernández, M.J.; Fontecha, J.L.; Lozano, J.; Santos, J.P.; Aleixandre, M.; Sayago, I.; Gutiérrez, J.; Horrillo, M.C. Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta 2006, 68, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Aleixandre, M.; Gutiérrez, J.; Horrillo, M.C. Electronic nose for wine discrimination. Sens. Actuators B Chem. 2006, 113, 911–916. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.P.; Horrillo, M.C. Enrichment sampling methods for wine discrimination with gas sensors. J. Food Comp. Anal. 2008, 2, 1716–1723. [Google Scholar]
- Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.J.; Horrillo, M.C. Portable e-nose to classify different kinds of wine. Sens. Actuators B Chem. 2008, 13, 171–176. [Google Scholar]
- Lozano, J.; Arroyo, T.; Santos, J.P.; Cabellos, J.M.; Horrillo, M.C. Electronic nose for wine aging detection. Sens. Actuators B Chem. 2008, 133, 180–186. [Google Scholar] [CrossRef]
- Santos, J.P.; Lozano, J.; Aleixandre, M.; Arroyo, T.; Cabellos, J.M.; Gil, M.; Horrillo, M.C. Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta 2010, 80, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, T.; Audeguin, L.; Boselli, M.; Bucchetti, B.; Cabello, F.; Chatelet, P.; Crespan, M.; D’Onofrio, C.; Eiras Dias, J.; Ercisli, S.; et al. Grapevine European catalogue: Towards to a comprehensive list. Vitis 2011, 50, 65–68. [Google Scholar]
- The Grapewine Collection of “El Encín). Available online: http://www.madrid.org/coleccionvidencin/ (accessed on 5 February 2015).
- Santos, J.P.; Cabellos, J.M.; Arroyo, T.; Horrillo, M.C. Portable Electronic Nose to Discriminate Artificial Aged Wine from Barrel-Aged Wine. In Proceedings of the 14th International Symposium on Olfaction and Electronic Nose, New York, NY, USA, 3–5 May 2011; pp. 171–173.
- Aleixandre, M.; Sayago, I.; Horrillo, M.C.; Fernández, M.J.; Arés, L.; García, M.; Santos, J.P.; Gutiérrez, J. Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gases. Sens. Actuators B Chem. 2004, 103, 122–128. [Google Scholar] [CrossRef]
- Bayonove, C. Enología: Fundamentos Científicos y Tecnológicos; AMV Ediciones, Mundi-Prensa: Madrid, Spain, 2003; pp. 137–146. [Google Scholar]
- Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. The Chemistry of Wine Stabilization and Treatments (2); John Wiley and Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Coehlo, E.; Rocha, S.M.; Barros, A.; Delgadillo, I.; Coimbra, M.A. Screening of variety and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Anal. Chim. Acta 2007, 597, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Santiago, J.L.; Martínez, M.C. Aroma potential of Brancellao grapes from different cluster positions. Food Chem. 2012, 132, 112–124. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleixandre, M.; Santos, J.P.; Sayago, I.; Cabellos, J.M.; Arroyo, T.; Horrillo, M.C. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties. Sensors 2015, 15, 8429-8443. https://doi.org/10.3390/s150408429
Aleixandre M, Santos JP, Sayago I, Cabellos JM, Arroyo T, Horrillo MC. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties. Sensors. 2015; 15(4):8429-8443. https://doi.org/10.3390/s150408429
Chicago/Turabian StyleAleixandre, Manuel, Jose Pedro Santos, Isabel Sayago, Juan Mariano Cabellos, Teresa Arroyo, and Maria Carmen Horrillo. 2015. "A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties" Sensors 15, no. 4: 8429-8443. https://doi.org/10.3390/s150408429