Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging
<p>Typical cross-sectional structures of (<b>a</b>) piezoelectric ultrasonic transducers; (<b>b</b>) CMUTs and (<b>c</b>) <span class="html-italic">d<sub>31</sub></span>‑mode PMUTs.</p> "> Figure 2
<p>FESEM images of (<b>a</b>) cross-sectional and (<b>b</b>) top surface of PZT thin film; (<b>c</b>) XRD pattern of the PZT film with the absence of PbO (2θ = 29.09°) and pyrochlore/fluorite (2θ = 29.55°); (<b>d</b>) hysteresis loop of the sputtered PZT thin film.</p> "> Figure 3
<p>(<b>a</b>–<b>g</b>) Typical sacrificial layer release process flow; and (<b>h</b>) top view of two fabricated adjacent PMUT elements. © 1998 AIP Publishing LLC. Reprinted with permission from [<a href="#B27-sensors-15-08020" class="html-bibr">27</a>].</p> "> Figure 4
<p>Fabrication process flow of PMUT element with diaphragm defined by back-side etching © 2004 Elsevier B.V. Reprinted with permission from [<a href="#B30-sensors-15-08020" class="html-bibr">30</a>].</p> "> Figure 5
<p>Sloping sidewalls are formed with anisotropic wet etching.</p> "> Figure 6
<p>(<b>a</b>) Fabrication process flow of PMUTs with diaphragm defined by front-side etching; (<b>b</b>) FESEM cross-sectional image of a released cavity.</p> "> Figure 7
<p>Fabrication process flow of PMUTs with diaphragms formed by reverse bonding [<a href="#B71-sensors-15-08020" class="html-bibr">71</a>].</p> "> Figure 8
<p>SEM images of (<b>a</b>) oblique view of the structure of PMUTs; (<b>b</b>) oblique view of a single PMUT element; (<b>c</b>) the suspended membrane stack; (<b>d</b>) oblique view of the cavity; and (<b>e</b>) the PZT thin film layer [<a href="#B71-sensors-15-08020" class="html-bibr">71</a>].</p> "> Figure 9
<p>Schematic diagrams of (<b>a</b>) electronic scanning of 1-D linear arrays; <b>(b</b>) electronic focusing and steering of 1-D phased linear arrays.</p> "> Figure 10
<p>Images of (<b>a</b>) a 4-inch wafer with multiple PMUT dies with different diameter diaphragms; (<b>b</b>) three PMUT arrays on one die; (<b>c</b>) several elements of a PMUT array, each consisting of ten diaphragms; and (<b>d</b>) three fully packaged wire-bonded devices.</p> "> Figure 11
<p>(<b>a</b>) Receive and (<b>b</b>) transmit response of one element in a PMUT array measured with a 30.5 MHz piezocomposite transducer in deionized water. In the time-domain figures, the blue curve represents original signal with green part of Tukey-windowed signal, and the cyan curve represents Hilbert transformed signal; in the frequency-domain figures, the blue curve represents the FFT spectrum of the Tukey-windowed signal.</p> "> Figure 12
<p>SEM and optical images of a 64 channel 5 MHz linear array exploiting five different dome sizes with cavities ranging from 74 to 90 µm diameter. © 2012 AIP Publishing LLC. Reprinted with permission from [<a href="#B34-sensors-15-08020" class="html-bibr">34</a>].</p> "> Figure 13
<p>Photographs of (<b>a</b>) 2D PMUT arrays; (<b>b</b>) a packaged array used for testing; and (<b>c</b>) a 6 × 6 2-D PMUT matrix array with element size 200 μm × 200 μm and total area less than 2 mm × 2 mm [<a href="#B71-sensors-15-08020" class="html-bibr">71</a>].</p> "> Figure 14
<p>Cross-sectional schematic diagrams of (<b>a</b>) PMUTs with through-Si interconnects and (<b>b</b>) a PMUT array substrate bonded onto a wiring substrate; (<b>c</b>) a mechanical model and (<b>d</b>) photograph of the distal end of a steerable 14-Fr (Ø4.667 mm) ICE catheter containing a 512-element PMUT matrix array. © 2013 IEEE. Reprinted with permission from [<a href="#B35-sensors-15-08020" class="html-bibr">35</a>].</p> "> Figure 14 Cont.
<p>Cross-sectional schematic diagrams of (<b>a</b>) PMUTs with through-Si interconnects and (<b>b</b>) a PMUT array substrate bonded onto a wiring substrate; (<b>c</b>) a mechanical model and (<b>d</b>) photograph of the distal end of a steerable 14-Fr (Ø4.667 mm) ICE catheter containing a 512-element PMUT matrix array. © 2013 IEEE. Reprinted with permission from [<a href="#B35-sensors-15-08020" class="html-bibr">35</a>].</p> ">
Abstract
:1. Introduction
2. Piezoelectric Materials for PMUTs
3. Fabrication of PMUT Element
3.1. Diaphragm Defined with Sacrificial Layer Releasing
3.2. Diaphragm Defined with Back-Side Etching
3.3. Diaphragm Defined with Front-Side Etching
3.4. Wafer Transfer Diaphragm Formation
4. Development of PMUT Arrays
6. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
References
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Jiang, X.; Kim, K.; Zhang, S.; Johnson, J.; Salazar, G. High-temperature piezoelectric sensing. Sensors 2013, 14, 144–169. [Google Scholar] [CrossRef] [PubMed]
- Watson, B.; Friend, J.; Yeo, L. Piezoelectric ultrasonic micro/milli-scale actuators. Sens. Actuators A Phys. 2009, 152, 219–233. [Google Scholar] [CrossRef]
- Donald, I.; Macvicar, J.; Brown, T. Investigation of abdominal masses by pulsed ultrasound. Lancet 1958, 271, 1188–1195. [Google Scholar] [CrossRef]
- Fenster, A.; Downey, D.B. 3-D ultrasound imaging: a review. IEEE Eng. Med. Biol. Mag. 1996, 15, 41–51. [Google Scholar] [CrossRef]
- Haar, G.R. Ter High Intensity Focused Ultrasound for the Treatment of Tumors. Echocardiography 2001, 18, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, H.; Demore, C.E.M.; Hughes, D.A.; Glynne-Jones, P.; Gebhardt, S.; Bolhovitins, A.; Poltarjonoks, R.; Weijer, K.; Schönecker, A.; et al. Acoustic devices for particle and cell manipulation and sensing. Sensors 2014, 14, 14806–14838. [Google Scholar] [CrossRef] [PubMed]
- Coakley, W.T.; Bardsley, D.W.; Grundy, M.A.; Zamani, F.; Clarke, D.J. Cell manipulation in ultrasonic standing wave fields. J. Chem. Technol. Biotechnol. 1989, 44, 43–62. [Google Scholar] [CrossRef]
- Cheeke, J.D.N. Fundamentals and Applications of Ultrasonic Waves, 2nd ed.; CRC Press: London, UK, 2012; pp. 1–504. [Google Scholar]
- Cochran, S. 1—Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers. In Ultrasonic Transducers; Nakamura, K., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 3–35. [Google Scholar]
- 176-1987—IEEE Standard on Piezoelectricity. Available online: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=26560&contentType=Standards (accessed on 3 April 2015).
- Lee, J.; Lee, C.; Kim, H.H.; Jakob, A.; Lemor, R.; Teh, S.-Y.; Lee, A.; Shung, K.K. Targeted cell immobilization by ultrasound microbeam. Biotechnol. Bioeng. 2011, 108, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Cobbold, R.S.C. Foundations of Biomedical Ultrasound; Biomedical Engineering Series; Oxford University Press: New York, NY, USA, 2006; pp. 1–832. [Google Scholar]
- Shung, K.K.; Zipparo, M. Ultrasonic transducers and arrays. IEEE Eng. Med. Biol. Mag. 1996, 15, 20–30. [Google Scholar] [CrossRef]
- Brown, J.A.; Sharma, S.; Leadbetter, J.; Cochran, S.; Adamson, R. Mass-Spring Matching Layers for High-Frequency Ultrasound Transducers: A New Technique Using Vacuum Deposition. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.F.; Espinoza, J.; Kusanovic, J.P.; Lee, W.; Nien, J.K.; Santolaya-Forgas, J.; Mari, G.; Treadwell, M.C.; Romero, R. Applications of 2-dimensional matrix array for 3- and 4-dimensional examination of the fetus: A pictorial essay. J. Ultrasound Med. 2006, 25, 745–755. [Google Scholar]
- Light, E.; Lieu, V.; Smith, S. New fabrication techniques for ring-array transducers for real-time 3D intravascular ultrasound. Ultrason. Imaging 2009, 31, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Stephens, D.N.; O’Donnell, M. Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Bruce, C.J.; Friedman, P.A. Intracardiac echocardiography. Eur. J. Echocardiogr. 2001, 2, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Ladabaum, I.; Jin, X.; Soh, H.T.; Atalar, A.; Khuri-Yakub, B.T. Surface micromachined capacitive ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 678–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurun, G.; Tekes, C.; Zahorian, J.; Xu, T.; Satir, S.; Karaman, M.; Hasler, J.; Degertekin, F.L. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Oralkan, O.; Khuri-Yakub, B. A comparison between conventional and collapse-mode capacitive micromachined ultrasonic transducers in 10-MHz 1-D arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Soh, H.T.; Ladabaum, I.; Atalar, A.; Quate, C.F.; Khuri-Yakub, B.T. Silicon micromachined ultrasonic immersion transducers. Appl. Phys. Lett. 1996, 69, 3674. [Google Scholar] [CrossRef]
- Eccardt, P.C.; Niederer, K. Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process. Ultrasonics 2000, 38, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Khuri-Yakub, B.T.; Oralkan, O. Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J. Micromech. Microeng. 2011, 21, 54004–54014. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.J.; Finberg, S.L.; Houston, K.; Niles, L.C.; Chen, H.D.; Cross, L.E.; Li, K.K.; Udayakumar, K. Micromachined high frequency ferroelectric sonar transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 960–969. [Google Scholar] [CrossRef]
- Perçin, G.; Atalar, A.; Levent Degertekin, F.; Khuri-Yakub, B.T. Micromachined two-dimensional array piezoelectrically actuated transducers. Appl. Phys. Lett. 1998, 72, 1397. [Google Scholar] [CrossRef]
- Yamashita, K.; Katata, H.; Okuyama, M.; Miyoshi, H.; Kato, G.; Aoyagi, S.; Suzuki, Y. Arrayed ultrasonic microsensors with high directivity for in-air use using PZT thin film on silicon diaphragms. Sens. Actuators A Phys. 2002, 97–98, 302–307. [Google Scholar] [CrossRef]
- Muralt, P.; Baborowski, J. Micromachined ultrasonic transducers and acoustic sensors based on piezoelectric thin films. J. Electroceram. 2004, 12, 101–108. [Google Scholar] [CrossRef]
- Akasheh, F.; Myers, T.; Fraser, J.D.; Bose, S.; Bandyopadhyay, A. Development of piezoelectric micromachined ultrasonic transducers. Sens. Actuators A Phys. 2004, 111, 275–287. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Tan, O.K.; Chao, C.; Zhu, H.; Miao, J. Ultrasound radiating performances of piezoelectric micromachined ultrasonic transmitter. Appl. Phys. Lett. 2005, 86, 033508. [Google Scholar] [CrossRef]
- Muralt, P.; Ledermann, N.; Paborowski, J.; Barzegar, A.; Gentil, S.; Belgacem, B.; Petitgrand, S.; Bosseboeuf, A.; Setter, N. Piezoelectric micromachined ultrasonic transducers based on PZT thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Dausch, D.E.; Castellucci, J.B.; Chou, D.R.; von Ramm, O.T. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2484–2492. [Google Scholar] [CrossRef] [PubMed]
- Hajati, A.; Latev, D.; Gardner, D.; Hajati, A.; Imai, D.; Torrey, M.; Schoeppler, M. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer. Appl. Phys. Lett. 2012, 101, 253101. [Google Scholar] [CrossRef]
- Dausch, D.E.; Gilchrist, K.H.; Carlson, J.B.; Hall, S.D.; Castellucci, J.B.; von Ramm, O.T. In vivo real-time 3-D intracardiac echo using PMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Griggio, F.; Demore, C.E.M.; Kim, H.; Gigliotti, J.; Qiu, Y.; Jackson, T.N.; Tutwiler, R.L.; Cochran, S.; Trolier-McKinstry, S. Micromachined diaphragm transducers for miniaturised ultrasound arrays. In Proceedings of 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1–4.
- Hong, E.; Krishnaswamy, S.V.; Freidhoff, C.B.; Trolier-McKinstry, S. Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes. Sens. Actuators A Phys. 2005, 119, 521–527. [Google Scholar] [CrossRef]
- Hong, E.; Trolier-McKinstry, S.; Smith, R.; Krishnaswamy, S.V.; Freidhoff, C.B. Vibration of micromachined circular piezoelectric diaphragms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 697–706. [Google Scholar] [PubMed]
- Bernstein, J.J.; Bottari, J.; Houston, K.; Kirkos, G.; Miller, R.; Xu, B.; Ye, Y.; Cross, L.E. Advanced MEMS ferroelectric ultrasound 2D arrays. In Proceedings of 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, 17–20 October 1999; Volume 2, pp. 1145–1153.
- Klee, M.; Mauczok, R.; van Heesch, C.; Boots, H.; de Wild, M.; op het Veld, B.; Soer, W.; Schmitz, G.; Mleczko, M. Piezoelectric thin film platform for ultrasound transducer arrays. In Proceedings of 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, 18–21 October 2011; pp. 196–199.
- Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A.L.; Reimann, K.; et al. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches. IOP Conf. Ser. Mater. Sci. Eng. 2010, 8, 012008. [Google Scholar] [CrossRef]
- Trolier-McKinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Hong, E. Surface Micromachined Peristaltic Pumps Using Lead Zirconate Titanate Film. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2004; pp. 1–195. [Google Scholar]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: Singapore, 1959; pp. 1–579. [Google Scholar]
- Morse, P.M.; Ingard, K.U. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1987; pp. 1–949. [Google Scholar]
- Baborowski, J. Microfabrication of piezoelectric MEMS. J. Electroceram. 2004, 12, 33–51. [Google Scholar] [CrossRef]
- Ergun, A.S.; Cheng, C.-H.; Oralkan, O.; Johnson, J.; Jagannathan, H.; Demirci, U.; Yaralioglu, G.G.; Karaman, M.; Khuri-Yakub, B.T. Broadband capacitive micromachined ultrasonic transducers ranging from 10 kHz to 60 MHz for imaging arrays and more. In Proceedings of 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 1039–1043.
- Bayram, B.; Haeggström, E.; Yaralioglu, G.G.; Khuri-Yakub, B.T. A new regime for operating capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Akasheh, F.; Fraser, J. Piezoelectric micromachined ultrasonic transducers: Modeling the influence of structural parameters on device performance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Vernet, J.L.; Steichen, W.; Lardat, R.; Garcia, O.; Gelly, J.F. PMUTS design optimization for medical probes applications. In Proceedings of 2001 IEEE Ultrasonics Symposium, Atlanta, GA, USA, 7–10 October 2001; pp. 899–902.
- Zhou, Q.; Lau, S.; Wu, D.; Shung, K.K. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 2011, 56, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, W.; Miao, J.; Zhu, H.; Chao, C.; Tan, O.K. Micromachined thick film piezoelectric ultrasonic transducer array. Sens. Actuators A Phys. 2006, 130–131, 485–490. [Google Scholar] [CrossRef]
- Sammoura, F.; Kim, S.-G. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Percin, G.; Khuri-Yakub, B.T. Piezoelectrically actuated flextensional micromachined ultrasound transducers. I. Theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Sammoura, F.; Smyth, K.; Kim, S.-G. Optimizing the electrode size of circular bimorph plates with different boundary conditions for maximum deflection of piezoelectric micromachined ultrasonic transducers. Ultrasonics 2013, 53, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, B.; Cook, W.R.; Jaffe, H.L. Piezoelectric Ceramics; Academic Press: Waltham, MA, USA, 1971; pp. 1–317. [Google Scholar]
- Mo, J.-H.; Robinson, A.L.; Fitting, D.W.; Terry, F.L.; Carson, P.L. Micromachining for improvement of integrated ultrasonic transducer sensitivity. IEEE Trans. Electron Devices 1990, 37, 134–140. [Google Scholar] [CrossRef]
- Mo, J.H.; Fowlkes, J.B.; Robinson, A.L.; Carson, P.L. Crosstalk reduction with a micromachined diaphragm structure for integrated ultrasound transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Shelton, S.; Chan, M.-L.; Park, H.; Horsley, D.; Boser, B.; Izyumin, I.; Przybyla, R.; Frey, T.; Judy, M.; Nunan, K.; et al. CMOS-compatible AlN piezoelectric micromachined ultrasonic transducers. In Proceedings of 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 19 – 23 September 2009; pp. 402–405.
- Guedes, A.; Shelton, S.; Przybyla, R.; Izyumin, I.; Boser, B.; Horsley, D.A. Aluminum nitride pMUT based on a flexurally-suspended membrane. In Proceedings of 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 2062–2065.
- Percin, G.; Khuri-Yakub, B. Micromachined 2-D array piezoelectrically actuated flextensional transducers. In Proceedings of 1997 IEEE Ultrasonics Symposium Proceedings, Toronto, ON, Canada, 5–8 October 1997; pp. 959–962.
- Suo, Z.; Hao, Z.; Qiao, D. The designing and manufacturing of 1 MHz piezoelectric micro-machined ultrasonic transducer. In Proceedings of 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Shanghai, China, 23–25 November 2012; pp. 5–8.
- Percin, G.; Khuri-Yakub, B.T. Piezoelectrically actuated flextensional MUTs. In Proceedings of 2001 IEEE Ultrasonics Symposium, Atlanta, GA, USA, 7–10 October 2001; pp. 903–906.
- Perçin, G.; Khuri-Yakub, B.T. Piezoelectrically actuated flextensional micromachined ultrasound transducers. Ultrasonics 2002, 40, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Hajati, A.; Latev, D.; Gardner, D.; Ottosson, M.; Imai, D.; Torrey, M.; Schoeppler, M. Monolithic ultrasonic integrated circuits based on micromachined semi-ellipsoidal piezoelectric domes. Appl. Phys. Lett. 2013, 103, 202906. [Google Scholar] [CrossRef]
- Muralt, P. PZT thin films for microsensors and actuators: Where do we stand? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Akai, D.; Yogi, T.; Kamja, I.; Numata, Y.; Ozaki, K.; Sawada, K.; Okada, N.; Higuchi, K.; Ishida, M. Miniature ultrasound acoustic imaging devices using 2-D pMUTs array on epitaxial PZT/SrRuO3/Pt/γ-Al2O3/Si structure. In Proceedings of 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 910–913.
- Mina, I.G.; Kim, H.; Kim, I.; Park, S.K.; Choi, K.; Jackson, T.N.; Tutwiler, R.L.; Trolier-McKinstry, S. High frequency piezoelectric MEMS ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Baborowski, J.; Ledermann, N.; Muralt, P. Piezoelectric micromachined transducers (PMUT’s) based on PZT thin films. In Proceedings of 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 2, pp. 1051–1054.
- Jung, J.; Kim, S.; Lee, W.; Choi, H. Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections. J. Micromech. Microeng. 2013, 23, 125037. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, H.; Wang, Y.-F.; Shu, Y.; Zhou, C.-J.; Sun, H.; Zhang, C.-H.; Chen, H.; Ren, T.-L. An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging. Sensors 2013, 13, 9624–9634. [Google Scholar] [CrossRef] [PubMed]
- Griggio, F.; Jesse, S.; Kumar, A.; Ovchinnikov, O.; Kim, H.; Jackson, T.N.; Damjanovic, D.; Kalinin, S.V.; Trolier-McKinstry, S. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films. Phys. Rev. Lett. 2012, 108, 157604. [Google Scholar] [CrossRef] [PubMed]
- Baborowski, J.; Ledermann, N.; Muralt, P.; Schmitt, D. Simulation and characterization of piezoelectric micromachined ultrasonic transducers (PMUT’s) based on PZT/SOI membranes. Integr. Ferroelectr. 2010, 54, 557–564. [Google Scholar] [CrossRef]
- Al-Hattamleh, O.; Cho, J. The effect of design and process parameters on electromechanical coupling for a thin-film PZT membrane. J. Microelectromech. Syst. 2006, 15, 1715–1725. [Google Scholar] [CrossRef]
- Yamashita, K.; Okuyama, M. Sensitivity improvement of diaphragm type ultrasonic sensors by complementary piezoelectric polarization. Sens. Actuators A Phys. 2006, 127, 119–122. [Google Scholar] [CrossRef]
- Dausch, D.E.; Gilchrist, K.H.; Castellucci, J.B.; Chou, D.R. Performance of flexure-mode pMUT 2D arrays. In Proceedings of 2007 IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 1053–1056.
- Dausch, D.E.; Gilchrist, K.H.; Carlson, J.R.; Castellucci, J.B.; Chou, D.R.; von Ramm, O.T. Improved pulse-echo imaging performance for flexure-mode pMUT arrays. In Proceedings of 2010 IEEE International Ultrasonics Symposium, New York, NY, USA, 28–31 October 2010; pp. 451–454.
- Percin, G.; Khuri-Yakub, B.T. Piezoelectrically actuated flextensional micromachined ultrasound transducers. II. Fabrication and experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Shu, Y.; Yang, Y.; Zhou, C.-J.; Wang, Y.; Tian, H.; Zhang, C.-H.; Sun, H.; Liu, X. Micromachined piezoelectric devices for acoustic applications. In Proceedings of 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), Bangkok, Thailand, 3–5 December 2012; pp. 1–4.
- Fu, D.; Ren, T.; Chen, H.; Yang, Y.; Kong, X.; Ren, Y.; Liao, W.; Liu, L. A novel method for fabricating 2-D array piezoelectric micromachined ultrasonic transducers for medical imaging. In Proceedings of 2009 18th IEEE International Symposium on the Applications of Ferroelectrics, Xi’an, China, 23–27 August 2009; pp. 1–4.
- Yamashita, K.; Chansomphou, L.; Murakami, H.; Okuyama, M. Ultrasonic micro array sensors using piezoelectric thin films and resonant frequency tuning. Sens. Actuators A Phys. 2004, 114, 147–153. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Zhu, H.; Miao, J.; Chao, C.; Zhao, C.; Tan, O.K. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2289–2297. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Lopez, J.; Sanchez-Lopez, C. Electromechanical Performance Comparison for Different Piezoelectric Micromachined Ultrasonic Transducer Element Geometries. In Proceedings of 2013 UKSim 15th International Conference on Computer Modelling and Simulation, Cambridge, UK, 10–12 April 2013; pp. 787–791.
- Wang, Y.-F.; Ren, T.-L.; Yang, Y.; Chen, H.; Zhou, C.-J.; Wang, L.-G.; Liu, L.-T. High-density pMUT array for 3-D ultrasonic imaging based on reverse-bonding structure. In Proceedings of 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 1035–1038.
- Wang, Y.-F.; Yang, Y.; Ren, T.-L.; Chen, H.; Liao, W.-J.; Kong, X.-M.; Wang, L.-G.; Zhou, C.-J.; Fu, D.; Liu, L.-T. Ultrasonic transducer array design for medical imaging based on MEMS technologies. In Proceedings of 2010 3rd Intersnational Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 666–669.
- MacLennan, D. Fundamental Characterisation and Early Functional Testing of Micromoulded Piezocomposites. Eng.D. Thesis, University of Strathclyde, Glasgow, UK, 2010; pp. 1–264. [Google Scholar]
- Trolier-McKinstry, S.; Griggio, F.; Yaeger, C.; Jousse, P.; Zhao, D.; Bharadwaja, S.S.N.; Jackson, T.N.; Jesse, S.; Kalinin, S.V.; Wasa, K. Designing piezoelectric films for micro electromechanical systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.M.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors 2015, 15, 8020-8041. https://doi.org/10.3390/s150408020
Qiu Y, Gigliotti JV, Wallace M, Griggio F, Demore CEM, Cochran S, Trolier-McKinstry S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors. 2015; 15(4):8020-8041. https://doi.org/10.3390/s150408020
Chicago/Turabian StyleQiu, Yongqiang, James V. Gigliotti, Margeaux Wallace, Flavio Griggio, Christine E. M. Demore, Sandy Cochran, and Susan Trolier-McKinstry. 2015. "Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging" Sensors 15, no. 4: 8020-8041. https://doi.org/10.3390/s150408020
APA StyleQiu, Y., Gigliotti, J. V., Wallace, M., Griggio, F., Demore, C. E. M., Cochran, S., & Trolier-McKinstry, S. (2015). Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors, 15(4), 8020-8041. https://doi.org/10.3390/s150408020