MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy
<p>Examples of MEMS for medical applications. (<b>a</b>) Wearable monitoring inertial device for measuring sexual performance. Adapted with permission from [<a href="#B16-sensors-15-06441" class="html-bibr">16</a>] (copyright: Elsevier); (<b>b</b>) Center of pressure displacement maps obtained by means of tri-axial accelerometers mounted on healthy and Parkinsonian subjects. AP = antero-posterior plane, ML = medio-lateral plane. Adapted with permission from [<a href="#B24-sensors-15-06441" class="html-bibr">24</a>] (copyright: Creative Commons); (<b>c</b>) Endoscopic capsules provided with inertial sensors for vibratory motor control. Adapted with permission from [<a href="#B34-sensors-15-06441" class="html-bibr">34</a>] (copyright: Elsevier); (<b>d</b>) MEMS integrated in toys for monitoring preterm infants at risk of neurodevelopmental disorders. Adapted with permission from [<a href="#B38-sensors-15-06441" class="html-bibr">38</a>] (copyright: Creative Commons).</p> "> Figure 2
<p>Examples of MEMS for assistance and rehabilitation. (<b>a</b>) Wearable inertial sensors for continuous monitoring of turning during spontaneous daily activity. Adapted with permission from [<a href="#B66-sensors-15-06441" class="html-bibr">66</a>] (copyright: MDPI—<span class="html-italic">Sensors</span> journal); (<b>b</b>) Wearable multi-sensor system (composed of a number of small modules that embed high-precision MEMS accelerometers and wireless communications) for human motion monitoring in rehabilitation. Adapted with permission from [<a href="#B72-sensors-15-06441" class="html-bibr">72</a>] (copyright: MDPI—<span class="html-italic">Sensors</span> journal); (<b>c</b>) Silicon MEMS-based piezoresistive sensing array (<span class="html-italic">i.e.</span>, four MEMS based piezoresistive sensors) for tactile sensing. (Courtesy of Calogero Maria Oddo).</p> "> Figure 3
<p>Examples of MEMS for sport and leisure applications. (<b>a</b>) IMU mounted on the trunk for estimating squat exercise dynamics. Adapted with permission from [<a href="#B91-sensors-15-06441" class="html-bibr">91</a>] (copyright: Elsevier); (<b>b</b>) MEMS pressure sensors used to assess balance abilities and non-cyclic rapidity of soccer players. Adapted with permission from [<a href="#B100-sensors-15-06441" class="html-bibr">100</a>] (copyright: Creative Commons); (<b>c</b>) Climbing dynamics quantified by means of kinematic data associated with vertical plantar reaction forces, measured through MEMS capacitive sensors. Adapted with permission from [<a href="#B104-sensors-15-06441" class="html-bibr">104</a>] (copyright: John Wiley & Sons).</p> "> Figure 4
<p>Number of research papers published in the period 2011–2014 on MEMS sensors. The analysis was conducted for all the EU member states and for other countries with relatively high income and technological development level. Source: Scopus, searching the word “MEMS sensor” in title, abstract and keywords for journal papers and conference proceedings.</p> ">
Abstract
:1. Introduction
2. MEMS-Based Sensor Technologies for Human Centred Applications
2.1. Healthcare
2.1.1. Medicine
2.1.2. Assistance and Rehabilitation
2.2. Physical Activities, Safety and Environment Sensing
2.2.1. Sport and Leisure
2.2.2. Safety and Environmental Sensing
3. Conclusions and Future Perspectives
Acknowledgments
Conflicts of Interest
References
- Gad-el-Hak, M. The MEMS Handbook; CRC Press: London, UK, 2001. [Google Scholar]
- Du Plessis, M. Sensors, MEMS, and Electro-Optical Systems; SPIE Press: Bellingham, WA, USA, 2014. [Google Scholar]
- Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42. [Google Scholar] [CrossRef]
- Paul, W.; Pearson, G. Pressure dependence of the resistivity of silicon. Phys. Rev. 1955, 98, 1755. [Google Scholar] [CrossRef]
- Pfann, W.; Thurston, R. Semiconducting stress transducers utilizing the transverse and shear piezoresistance effects. J. Appl. Phys. 1961, 32, 2008–2019. [Google Scholar] [CrossRef]
- Tufte, O.; Chapman, P.; Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 1962, 33, 3322–3327. [Google Scholar] [CrossRef]
- Bogue, R. MEMS sensors: Past, present and future. Sens. Rev. 2007, 27, 7–13. [Google Scholar] [CrossRef]
- Bogue, R. Recent developments in MEMS sensors: A review of applications, markets and technologies. Sens. Rev. 2013, 33, 300–304. [Google Scholar] [CrossRef]
- Nihtianov, S.; Luque, A. Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications; Woodhead Publishing: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Magno, M.; Benini, L.; Spagnol, C.; Popovici, E. Wearable Low Power Dry Surface Wireless Sensor nodes for Healthcare Monitoring Application. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 189–195.
- MNX Company. What Is MEMS Technology? Available online: http://www.mems-exchange.org/MEMS/what-is.html (accessed on 13 March 2015).
- Bogue, R. Towards the trillion sensors market. Sens. Rev. 2014, 34, 137–142. [Google Scholar] [CrossRef]
- Kaajakari, V. Practical Mems: Design of Microsystems, Accelerometers, Gyroscopes, RF MEMS, Optical MEMS, and Microfluidic Systems; Small Gear Publishing: Las Vegas, NV, USA, 2009. [Google Scholar]
- Wang, W.; Soper, S.A. Bio-MEMS: Technologies and Applications; CRC Press: London, UK, 2006. [Google Scholar]
- Ferrari, M.; Lee, A.P.; Lee, J. BioMEMS and Biomedical Nanotechnology: Volume i: Biological and Biomedical Nanotechnology; Springer: Berlin, Germany, 2007. [Google Scholar]
- Ciuti, G.; Nardi, M.; Valdastri, P.; Menciassi, A.; Fasolo, C.B.; Dario, P. Humove: A low-invasive wearable monitoring platform in sexual medicine. Urology 2014, 84, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Battista, L.; Scorza, A.; Sciuto, S.A. Experimental Characterization of a Novel Fiber-Optic Accelerometer for the Quantitative Assessment of Rest Tremor in Parkinsonian Patients. In Proceedings of the 9th IASTED International Conference of Biomedical Engineering, Innsbruck, Austria, 15–17 February 2012; pp. 437–442.
- Hobert, M.; Maetzler, W.; Aminian, K.; Chiari, L. Technical and clinical view on ambulatory assessment in Parkinsonʼs disease. Acta Neurol. Scand. 2014, 130, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Formica, D.; Melgari, J.; Taffoni, F.; Salomone, G.; di Biase, L.; Caimo, E.; Vernieri, F.; Guglielmelli, E. Neurophysiological Bases of Tremors and Accelerometric Parameters Analysis, Biomedical Robotics and Biomechatronics (BioRob). In Proceedings of the 4th IEEE RAS & EMBS International Conference on, Rome, Italy, 24–27 June 2012; pp. 1820–1825.
- Mellone, S.; Palmerini, L.; Cappello, A.; Chiari, L. Hilbert-huang-based tremor removal to assess postural properties from accelerometers. IEEE Trans. Biomed. Eng. 2011, 58, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Carlson-Kuhta, P.; Zampieri, C.; Nutt, J.G.; Chiari, L.; Horak, F.B. Postural sway as a marker of progression in Parkinsonʼs disease: A pilot longitudinal study. Gait Posture 2012, 36, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Chiari, L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. Isway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Maetzler, W.; Mancini, M.; Liepelt-Scarfone, I.; Müller, K.; Becker, C.; van Lummel, R.C.; Ainsworth, E.; Hobert, M.; Streffer, J.; Berg, D. Impaired trunk stability in individuals at high risk for Parkinsonʼs disease. PLoS One 2012, 7, e32240. [Google Scholar] [CrossRef] [PubMed]
- Palmerini, L.; Mellone, S.; Avanzolini, G.; Valzania, F.; Chiari, L. Quantification of motor impairment in Parkinsonʼs disease using an instrumented timed up and go test. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Palmerini, L.; Rocchi, L.; Mellone, S.; Valzania, F.; Chiari, L. A clinical application of feature selection: Quantitative evaluation of the locomotor function. In Knowledge Discovery, Knowledge Engineering and Knowledge Management; Springer: Berlin, Germany, 2013; pp. 151–157. [Google Scholar]
- Fazio, P.; Granieri, G.; Casetta, I.; Cesnik, E.; Mazzacane, S.; Caliandro, P.; Pedrielli, F.; Granieri, E. Gait measures with a triaxial accelerometer among patients with neurological impairment. Neurol. Sci. 2013, 34, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, F.; Esposito, D.; Rovini, E.; Aquilano, M.; Carrozza, M.C.; Dario, P.; Maremmani, C.; Bongioanni, P. Preliminary Evaluation of Senshand v1 in Assessing Motor Skills Performance in Parkinson’s Disease, Rehabilitation Robotics (ICORR). In Proceedings of the 2013 IEEE International Conference on, Seattle, WA, USA, 24–26 June 2013; pp. 1–6.
- Lapi, S.; Biagi, E.; Borgioli, G.; Calzolai, M.; Masotti, L.; Fontana, G. A Proposal of a Novel Cardiorespiratory Long-Term Monitoring Device. In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Rome, Italy, 26–29 January 2011; pp. 38–42.
- Bifulco, P.; Cesarelli, M.; Fratini, A.; Ruffo, M.; Pasquariello, G.; Gargiulo, G. A Wearable Device for Recording of Biopotentials and Body Movements. In Proceedings of the 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA), Bari, Italy, 30–31 May 2011; pp. 469–472.
- Sardini, E.; Serpelloni, M.; Ometto, M. Multi-Parameters Wireless Shirt for Physiological Monitoring. In Proceedings of the 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA), Bari, Italy, 30–31 May 2011; pp. 316–321.
- Ciuti, G.; Valdastri, P.; Menciassi, A.; Dario, P. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 2010, 28, 199–207. [Google Scholar] [CrossRef]
- Salerno, M.; Mulana, F.; Rizzo, R.; Landi, A.; Menciassi, A. Magnetic and inertial sensor fusion for the localization endoluminal diagnostic devices. Int. J. Comput. Assist. Radiol. Surgery (CARS) 2012, 7, 229–235. [Google Scholar] [CrossRef]
- Ciuti, G.; Pateromichelakis, N.; Sfakiotakis, M.; Valdastri, P.; Menciassi, A.; Tsakiris, D.; Dario, P. A wireless module for vibratory motor control and inertial sensing in capsule endoscopy. Sens. Actuators A Phys. 2012, 186, 270–276. [Google Scholar] [CrossRef]
- Serio, S.; Assaf, T.; Cecchi, F.; Laschi, C.; Dario, P. A Novel Wireless Toy for Measuring Infantsʼ Bimanual Actions. In Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1869–1873.
- Serio, S.M.; Cecchi, F.; Assaf, T.; Laschi, C.; Dario, P. Design and development of a sensorized wireless toy for measuring infantsʼ manual actions. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 444–453. [Google Scholar] [CrossRef] [PubMed]
- EU Caretoy Project. Available online: http://www.caretoy.eu (accessed on 13 March 2015).
- Sgandurra, G.; Bartalena, L.; Cioni, G.; Greisen, G.; Herskind, A.; Inguaggiato, E.; Lorentzen, J.; Nielsen, J.B.; Sicola, E. Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (caretoy): A RCT protocol. BMC Pediatr. 2014, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- EU Sensorart Project. Available online: http://www.sensorart.eu (accessed on 13 March 2015).
- ST Microelectronics. Available online: http://www.st.com (accessed on 13 March 2015).
- Valdastri, P.; Taccini, N.; Pinciaroli, A.; Nannizzi, M.; Dario, P. Wearable and Implanted Sensors Platform to Monitor and Control Left Ventricular Assist Devices. In Proceedings of the 5th European Conference of the International Federation for Medical and Biological Engineering, Budapest, Hungary, 14–18 Septembe 2011; pp. 964–967.
- Verbeni, A.; Fontana, R.; Silvestri, M.; Tortora, G.; Vatteroni, M.; Trivella, M.G.; Dario, P. An innovative adaptive control strategy for sensorized left ventricular assist devices. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Savoia, A.S.; Caliano, G.; Pappalardo, M. A cmut probe for medical ultrasonography: From microfabrication to system integration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, G.; Tocchio, A. On the operation of Lorentz-force mems magnetometers with a frequency offset between driving current and mechanical resonance. IEEE Trans. Magn. 2014, 50. [Google Scholar] [CrossRef]
- Buffa, C.; Langfelder, G.; Longoni, A.; Frangi, A.; Lasalandra, E. Compact MEMS magnetometers for inertial measurement units. Sensors 2012, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Perenzoni, M.; Perenzoni, D.; Stoppa, D.; Mulloni, V.; Solazzi, F.; Resta, G.; Margesin, B. Terahertz microsensor for Biomedical Applications. In Proceedings of the 2011 International Workshop on BioPhotonics, Parma, Italy, 8–10 June 2011; pp. 1–3.
- Tedeschi, L.; Domenici, C.; Russino, V.; Nannini, A.; Pieri, F. Label-Free Detection of Specific RNA Sequences by a DNA-Based CMOS BioMEMS. In Sensors and Microsystems; Springer: Berlin, Germany, 2014; pp. 277–280. [Google Scholar]
- Fior, R.; Maggiolino, S.; Lazzarino, M.; Sbaizero, O. A new transparent bio-MEMS for uni-axial single cell stretching. Microsyst. Technol. 2011, 17, 1581–1587. [Google Scholar] [CrossRef]
- Global Agenda Council on Ageing Society. Global Population Ageing: Peril or Promise? Available online: http://www3.weforum.org/docs/WEF_GAC_GlobalPopulationAgeing_Report_2012.pdf (accessed on 13 March 2015).
- An Aging Nation: The Older Population in the United States—Population Estimates and Projections. Available online: http://www.census.gov/prod/2014pubs/p25–1140.pdf (accessed on 13 March 2015).
- Sernani, P.; Claudi, A.; Palazzo, L.; Dolcini, G.; Dragoni, A.F. Home Care Expert Systems for Ambient Assisted Living: A Multi-Agent Approach. In Proceedings of the Workshop on The Challenge of Ageing Society: Technological Roles and Opportunities for Artificial Intelligence, Turin, Italy, 6 December 2013.
- Mannini, A.; Sabatini, A.M. On-Line Classification of Human Activity and Estimation of Walk-Run Speed from Acceleration Data Using Support Vector Machines. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Boton, MA, USA, 30 August–3 September 2011; pp. 3302–3305.
- Mannini, A.; Sabatini, A.M. Accelerometry-based classification of human activities using Markov modeling. Comput. Intell. Neurosci. 2011. [Google Scholar] [CrossRef]
- Mannini, A.; Intille, S.S.; Rosenberger, M.; Sabatini, A.M.; Haskell, W. Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 2013, 45, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Comotti, D.; Ermidoro, M.; Galizzi, M.; Vitali, A. Development of a wireless low-power multi-sensor network for motion tracking applications. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks (BSN), Cambridge, MA, USA, 6–9 May 2013; pp. 1–6.
- Palumbo, F.; Barsocchi, P.; Gallicchio, C.; Chessa, S.; Micheli, A. Multisensor data fusion for activity recognition based on reservoir computing. In Evaluating aal Systems through Competitive Benchmarking; Springer: Berlin, Germany, 2013; pp. 24–35. [Google Scholar]
- Ali, H.; Messina, E.; Bisiani, R. Subject-Dependent Physical Activity Recognition Model Framework with a Semi-Supervised Clustering Approach. In Proceedings of the 2013 European Modelling Symposium (EMS), Manchester, UK, 20–22 November 2013; pp. 42–47.
- Dionisi, A.; Sardini, E.; Serpelloni, M.; Pasqui, V. Instrumented shirt to evaluate classical human movements. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisbon, Portugal, 11–12 June 2014; pp. 1–6.
- Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS One 2012, 7, e37062. [Google Scholar] [CrossRef] [PubMed]
- Rescio, G.; Leone, A.; Siciliano, P. Supervised expert system for wearable MEMS accelerometer-based fall detector. J. Sens. 2013. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Siciliano, P. Supervised Machine Learning Scheme for Wearable Accelerometer-Based Fall Detector. In Sensors and Microsystems; Springer: Berlin, Germany, 2014; pp. 295–299. [Google Scholar]
- Ugolotti, R.; Sassi, F.; Mordonini, M.; Cagnoni, S. Multi-sensor system for detection and classification of human activities. J. Ambient Intell. Humaniz. Comput. 2013, 4, 27–41. [Google Scholar] [CrossRef]
- Diraco, G.; Leone, A.; Siciliano, P.; Grassi, M.; Malcovati, P. Multi-Sensor System for Fall Detection in Ambient Assisted Living Contexts. In Proceedings of the SENSORNETS, Rome, Italy, 24–26 February 2012; pp. 213–219.
- Fanucci, L.; Sabatelli, S.; Turturici, M.; Iacopetti, F.; Saponara, S.; Avvenuti, M. An integrated fall detection system with GSM module. In Assistive Technology Research Series; IOS Press: Amsterdam, The Netherlands, 2013; Volume 33, pp. 1001–1005. [Google Scholar]
- Abbate, S.; Avvenuti, M.; Bonatesta, F.; Cola, G.; Corsini, P.; Vecchio, A. A smartphone-based fall detection system. Pervasive Mob. Comput. 2012, 8, 883–899. [Google Scholar] [CrossRef]
- El-Gohary, M.; Pearson, S.; McNames, J.; Mancini, M.; Horak, F.; Mellone, S.; Chiari, L. Continuous monitoring of turning in patients with movement disability. Sensors 2013, 13, 356–369. [Google Scholar] [CrossRef]
- Cristiani, A.M.; Bertolotti, G.M.; Marenzi, E.; Ramat, S. An instrumented insole for long term monitoring movement, comfort, and ergonomics. IEEE Sens. J. 2014, 14, 1564–1572. [Google Scholar] [CrossRef]
- Klaassen, B.; van Beijnum, B.J.; Weusthof, M.; Hofs, D.; van Meulen, F.; Luinge, H.; Lorussi, F.; Hermens, H.; Veltink, P. A System for Monitoring Stroke Patients in a Home Environment. In Proceedings of the HEALTHINF 2014—7th International Conference on Health Informatics, Part of 7th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2014, Angers, France, 3–6 March 2014; pp. 125–132.
- European FP7 Interaction Project. Available online: http://cms.interaction4stroke.eu/drupal/ (accessed on 13 March 2015).
- Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; de Angelis, D.; Pratesi, L.; Paolucci, S. Seven capital devices for the future of stroke rehabilitation. Stroke Res. Treat. 2012. [Google Scholar] [CrossRef]
- Mirabella, O.; Raucea, A.; Fisichella, F.; Gentile, L. A Motion Capture System for Sport Training and Rehabilitation. In Proceedings of the 4th International Conference on Human System Interactions (HSI), Yokohama, Japan, 19–21 May 2012; pp. 52–59.
- González-Villanueva, L.; Cagnoni, S.; Ascari, L. Design of a wearable sensing system for human motion monitoring in physical rehabilitation. Sensors 2013, 13, 7735–7755. [Google Scholar] [CrossRef] [PubMed]
- González-Villanueva, L.; Chiesi, L.; Mussi, L. Wireless Human Motion Acquisition System for Rehabilitation Assessment. In Proceedings of the 2012 25th International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22 June 2012; pp. 1–4.
- González-Villanueva, L.; Alvarez-Alvarez, A.; Ascari, L.; Trivino, G. A tool for linguistic assessment of rehabilitation exercises. Appl. Soft Comput. 2014, 14, 120–131. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Riccio, M.; Sementa, C. Design and validation of a motion-tracking system for ROM measurements in home rehabilitation. Measurement 2014, 55, 82–96. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Mittendorfer, P.; Valle, M.; Cheng, G.; Lumelsky, V. Directions towards effective utilization of tactile skin: A review. IEEE Sens. J. 2013, 13, 4121–4138. [Google Scholar] [CrossRef]
- Lucarotti, C.; Oddo, C.M.; Vitiello, N.; Carrozza, M.C. Synthetic and bio-artificial tactile sensing: A review. Sensors 2013, 13, 1435–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micera, S.; Carpaneto, J.; Raspopovic, S. Control of hand prostheses using peripheral information. Biomed. Eng. IEEE Rev. 2010, 3, 48–68. [Google Scholar] [CrossRef]
- Denei, S.; Mastrogiovanni, F.; Cannata, G. Towards the creation of tactile maps for robots and their use in robot contact motion control. Robot. Auton. Syst. 2015, 63, 293–308. [Google Scholar] [CrossRef]
- Oddo, C.M.; Beccai, L.; Wessberg, J.; Wasling, H.B.; Mattioli, F.; Carrozza, M.C. Roughness encoding in human and biomimetic artificial touch: Spatiotemporal frequency modulation and structural anisotropy of fingerprints. Sensors 2011, 11, 5596–5615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, H.; Recchiuto, C.; Oddo, C.; Beccai, L.; Anthony, C.; Adams, M.; Carrozza, M.; Ward, M. A capacitive tactile sensor array for surface texture discrimination. Microelectron. Eng. 2011, 88, 1811–1813. [Google Scholar] [CrossRef]
- Muhammad, H.; Oddo, C.; Beccai, L.; Recchiuto, C.; Anthony, C.; Adams, M.; Carrozza, M.; Hukins, D.; Ward, M. Development of a bioinspired mems based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229. [Google Scholar] [CrossRef]
- Oddo, C.M.; Controzzi, M.; Beccai, L.; Cipriani, C.; Carrozza, M.C. Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans. Robot. 2011, 27, 522–533. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Adami, A.; Pinna, L.; Collini, C.; Valle, M.; Lorenzelli, L. Tactile sensing chips with POSFET array and integrated interface electronics. Sens. J. IEEE 2014, 14, 3448–3457. [Google Scholar] [CrossRef]
- Crea, S.; Donati, M.; De Rossi, S.M.M.; Oddo, C.M.; Vitiello, N. A wireless flexible sensorized insole for gait analysis. Sensors 2014, 14, 1073–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R. MEMS conquering sports. EE Times 2012, 1615, 28–30. [Google Scholar]
- McCamley, J.; Donati, M.; Grimpampi, E.; Mazzà, C. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. Gait Posture 2012, 36, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement jump performance assessment using a wearable 3d inertial measurement unit. J. Sports Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Ganzetti, M.; Ditroilo, M.; Giovannelli, M.; Rocchetti, A.; Manzi, V. Concurrent validity of vertical jump performance assessment systems. J. Strength Cond. Res. 2013, 27, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, V.; Mazzà, C.; Fraisse, P.; Cappozzo, A. A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit. J. Biomech. 2012, 45, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Masci, I.; Vannozzi, G.; Bergamini, E.; Pesce, C.; Getchell, N.; Cappozzo, A. Assessing locomotor skills development in childhood using wearable inertial sensor devices: The running paradigm. Gait Posture 2013, 37, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Petrone, N.; Marcolin, G.; Cognolato, M.; Conte, D. Identification of skiing techniques with a single inertial sensor on the back: Preliminary methodological approches. In Proceedings of the International Congress on cience and Skiing, ICSS 2013, Salzburg, Austria, 14–19 December 2013; pp. 1–6.
- Zanetti, S.; Pumpa, K.L.; Wheeler, K.W.; Pyne, D.B. Validity of the sensewear armband to assess energy expenditure during intermittent exercise and recovery in Rugby Union players. J. Strength Cond. Res. 2014, 28, 1090–1095. [Google Scholar]
- Bassetti, M.; Braghin, F.; Castelli-Dezza, F.; Negrini, S.; Pennacchi, P. Sensor nodes for the dynamic assessment of Alpine skis. In Topics in Modal Analysis II; Springer: Berlin, Germany, 2012; pp. 471–479. [Google Scholar]
- Depari, A.; de Dominicis, C.; Flammini, A.; Rinaldi, S.; Vezzoli, A. Integration of Bluetooth handsfree sensors into a wireless body area network based on smartphone. In Sensors; Springer: Berlin, Germany, 2014; pp. 547–551. [Google Scholar]
- D’Addona, V.; Evangelista, M.; Viggiano, D. A new method for quantitative tremor assessment in sports. Sport Orthop. Sport Traumatol. Sports Orthop. Traumatol. 2014, 30, 54–59. [Google Scholar] [CrossRef]
- Cesarini, D.; Lelli, G.; Avvenuti, M. Are We Synchronized? Measure Synchrony in Team Sports Using A Network of Wireless Accelerometers. In Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing, Saint Etienne, France, 1–2 September 2014; pp. 1–6.
- Cesarini, D.; Schaffert, N.; Manganiello, C.; Mattes, K.; Avvenuti, M. Smartphone Based Sonification and Telemetry Platform for on-Water Rowing Training. In Proceedings of the 19th International Conference on Auditory Display (ICAD2013), Lodz, Poland, 6–9 July 2013.
- Ricotti, L.; Rigosa, J.; Niosi, A.; Menciassi, A. Analysis of balance, rapidity, force and reaction times of soccer players at different levels of competition. PLoS One 2013, 8, e77264. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, L. Static and dynamic balance in young athletes. J. Hum. Sport Exerc. 2011, 6, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Ricotti, L.; Ravaschio, A. Break dance significantly increases static balance in 9 years-old soccer players. Gait Posture 2011, 33, 462–465. [Google Scholar] [CrossRef]
- Pau, M.; Ciuti, C. Stresses in the plantar region for long-and short-range throws in women basketball players. Eur. J. Sport Sci. 2013, 13, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Zampagni, M.L.; Brigadoi, S.; Schena, F.; Tosi, P.; Ivanenko, Y. Idiosyncratic control of the center of mass in expert climbers. Scand. J. Med. Sci. Sports 2011, 21, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Bottoni, A.; Lanotte, N.; Boatto, P.; Bifaretti, S.; Bonifazi, M. Technical skill differences in stroke propulsion between high level athletes in triathlon and top level swimmers. J. Hum. Sport Exerc. 2011, 6, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, D.; Preatoni, E.; Stokes, K.A.; England, M.E.; Trewartha, G. A modified prebind engagement process reduces biomechanical loading on front row players during scrummaging: A cross-sectional study of 11 elite teams. Br. J. Sports Med. 2014. [Google Scholar] [CrossRef]
- Mazzei, F.; Antiochia, R.; Botrè, F.; Favero, G.; Tortolini, C. Affinity-based biosensors in sport medicine and doping control analysis. Bioanalysis 2014, 6, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Colleoni, C.; Guido, E.; Re, V.; Rosace, G.; Vitali, A. A wearable sweat pH and body temperature sensor platform for health, fitness, and wellness applications. In Sensors and Microsystems; Springer: Berlin, Germany, 2014; pp. 431–434. [Google Scholar]
- Caldara, M.; Colleoni, C.; Guido, E.; Re, V.; Rosace, G. Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with methyl red. Sens. Actuators B Chem. 2012, 171, 1013–1021. [Google Scholar] [CrossRef]
- Crepaldi, M.; Grosso, M.; Sassone, A.; Gallinaro, S.; Rinaudo, S.; Poncino, M.; MacIi, E.; Demarchi, D. A top-down constraint-driven methodology for smart system design. IEEE Circuits Syst. Mag. 2014, 14, 37–57. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Siciliano, P. Supervised machine learning scheme for wearable accelerometer-based fall detector. In Lecture Notes in Electrical Engineering; Springer: Berlin, Germany, 2014; Volume 268, pp. 295–299. [Google Scholar]
- Angrisano, A.; Petovello, M.; Pugliano, G. Benefits of combined gps/glonass with low-cost MEMS IMUS for vehicular urban navigation. Sensors 2012, 12, 5134–5158. [Google Scholar] [CrossRef] [PubMed]
- Fastellini, G.; Radicioni, F.; Stoppini, A. Field tests on gnss and inertial systems for transport fleet monitoring in urban environment. Ital. J. Remote Sens. 2011, 43, 41–54. [Google Scholar] [CrossRef]
- Trapani, D.; Biasi, N.; De Cecco, M.; Zonta, D. Validation of mems acceleration measurements for seismic monitoring with LVDT and vision system. In Proceedings of the 2012 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), Perugia, Italy, 28 September 2012; pp. 104–109.
- Savoia, M.; Vincenzi, L.; Bassoli, E.; Gambarelli, P.; Betti, R.; Testa, R. Identification of the Manhattan Bridge Dynamic Properties for Fatigue Assessment. In Proceedings of the 11th International Conference on Structural Safety and Reliability Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures—ICOSSAR 2013, New York, NY, USA, 16–20 June 2013; pp. 4667–4674.
- Guidorzi, R.; Diversi, R.; Vincenzi, L.; Mazzotti, C.; Simioli, V. Structural Monitoring of the Tower of the Faculty of Engineering in Bologna Using Mems-Based Sensing. In Proceedings of the 8th International Conference on Structural Dynamics (EURODYN 2011), Leuven, Belgium, 4–6 July 2011; pp. 2499–2506.
- Domaneschi, M.; Limongelli, M.; Martinelli, L. Multi-site damage localization in a suspension bridge via aftershock monitoring. Ing. Sism. 2013, 30, 56–72. [Google Scholar]
- Andò, B.; Baglio, S.; Savalli, N.; Trigona, C. Cascaded “triple-bent-beam” MEMS sensor for contactless temperature measurements in nonaccessible environments. IEEE Trans. Instrum. Meas. 2011, 60, 1348–1357. [Google Scholar] [CrossRef]
- Keränen, K.; Ollila, J.; Saloniemi, H.; Matveev, B.; Raittila, J.; Helle, A.; Kauppinen, I.; Kuusela, T.; Pierno, L.; Karioja, P.; et al. Portable Methane Sensor Demonstrator Based on LTCC Differential Photo Acoustic Cell and Silicon Cantilever. In Proceedings of the Procedia Engineering, Krakov, Poland, 9–12 September 2012; pp. 1438–1441.
- Orsini, A.; Gatta, F.; Leonardi, C.; Medaglia, P.; Bearzotti, A.; Giovine, E.; Foglietti, V.; D’Amico, A.; Falconi, C. Cmos Compatible, Low Power, High-Sensitivity Zn/Al Layered Double Hydroxides Humidity Micro-Sensor. In Sensors; Springer: Berlin, Germany, 2014; pp. 493–497. [Google Scholar]
- Zambelli, C.; Olivo, P.; Gaddi, R.; Schepens, C.; Smith, C. Characterization of a MEMS-Based Embedded non Volatile Memory Array for Extreme Environments. In Proceedings of the 3rd IEEE International Memory Workshop (IMW), Monterey, CA, USA, 22–25 May 2011; pp. 1–4.
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances that will Transform Life, Business, and the Global Economy; McKinsey Global Institute: San Francisco, CA, USA, 2013. [Google Scholar]
- McGrath, M.J.; Cliodhna, N. Sensor Technologies: Healthcare, Wellness and Environmental Applications; Apress: New York, NY, USA, 2013. [Google Scholar]
- Tutte le novità sugli smarphone biometrici: Il futuro è nei sensori—nova24 tech—il sole 24 ore. Available online: http://www.ilsole24ore.com/art/tecnologie/2014–02–21/tutte-novita-smarphone-biometrici-futuro-e-sensori-153549.shtml?uuid=ABgX4Cy (accessed on 13 March 2015).
- MEMS Market to Top $22 Billion by 2018—Source: Yole. Available online: http://www.eetimes.com/document.asp?doc_id=1320035 (accessed on 13 March 2015).
- STmicroelectronics Tops Five Billion MEMS Sensors Shipped—Extensive MEMS Portfolio, Which Also Includes Micro-Actuators, Drives Innovation Across IoT and Wearable, Mobile, Industrial, Consumer and Automotive Applications. Available online: http://www.st.com/web/en/press/t3603d (accessed on13 March 2015).
- Arduino Technologies. Available online: http://www.arduino.cc (accessed on 13 March 2015).
- Maker formato arduino—nova24 tech—il sole 24 ore. Available online: http://www.ilsole24ore.com/art/tecnologie/2014–10–06/maker-formato-arduino--105857.shtml?uuid=ABaiRQ0B (accessed on 13 March 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciuti, G.; Ricotti, L.; Menciassi, A.; Dario, P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors 2015, 15, 6441-6468. https://doi.org/10.3390/s150306441
Ciuti G, Ricotti L, Menciassi A, Dario P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors. 2015; 15(3):6441-6468. https://doi.org/10.3390/s150306441
Chicago/Turabian StyleCiuti, Gastone, Leonardo Ricotti, Arianna Menciassi, and Paolo Dario. 2015. "MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy" Sensors 15, no. 3: 6441-6468. https://doi.org/10.3390/s150306441
APA StyleCiuti, G., Ricotti, L., Menciassi, A., & Dario, P. (2015). MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors, 15(3), 6441-6468. https://doi.org/10.3390/s150306441