The Effectiveness of a Robotic Workstation Simulation Implementation in the Automotive Industry Using a Closed-Form Solution of the Absolute Orientation Problem
<p>Coordinate systems used in industrial robot systems (WCS—world coordinate system, UCS—user coordinate system, TCP—tool center point) and an example of a car-zero reference frame in a multi-robot (R01–R07) manufacturing station.</p> "> Figure 2
<p>Block diagram of the simulation adaptation process to real systems for industrial robots.</p> "> Figure 3
<p>Example of a robot tooling workstation with nominal value references, which are used to determine the local UCS.</p> "> Figure 4
<p>Distribution of the position, dispersion, and shape of the average difference of the translation of the simulated system to the real system for groups 1–4.</p> ">
Abstract
:1. Introduction
2. Software and Methods
Robot Positioning and Simulation Adaptation Process
- Joint offsets—discrepancy between mathematical and actual zero position;
- Geometric parameters—link lengths, twist angles;
- Non-geometric parameters—joint flexibilities, base tilt;
- Environment—temperature, humidity;
- Measurement factors—non-linear encoders/resolvers.
3. Implementation of a Closed-Form Solution
3.1. Methodology
- Unit quaternion q1, q2, q3, q4–q1 real part, q2–q4 imaginary part—ABB;
- Euler angles e = [ez, ey, ex]—KUKA (respectively A, B, C);
- Pitch, yaw, roll—CATIA, Process Simulate, FANUC;
- 3 × 3 rotation matrix—calculation purposes.
3.2. Single Measurement Case Example
4. Results
- Incorrect setup of the user coordinate system (UCS) in the simulation environment, deviating from the production plant’s guidelines;
- Position shifting of the mechanical executive systems on the production line without corresponding adjustments in the simulation environment;
- Exceeding assembly tolerance limits for the executive systems;
- Misdefining of the robot tools with its TCP and/or tool load values.
5. Summary and Conclusions
- Synchronize simulation with real environment data to more adequately reflect factory conditions including dynamic updates in simulated environment;
- Apply robust offline programming practices with tests at significant stages of program preparation;
- Enhance robots with absolute accuracy correction matrixes and intelligent optimization approaches;
- Regularly verify the kinematic error in robotic systems, especially in systems that are using dynamic position modification.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mourtzis, D.; Doukas, M.; Bernidaki, D. Simulation in Manufacturing: Review and Challenges. Procedia CIRP 2014, 25, 213–229. [Google Scholar] [CrossRef]
- ISO 9787:2013; Robots and Robotic Devices—Coordinate Systems and Motion Nomenclatures 2013. International Organization for Standardization: Geneva, Switzerland, 2023.
- Zhuang Zvi Roth, H.S.; Sudhakar, R. Simultaneous RobotlWorld and Tool-Flange Calibration by Solving Homogeneous Transformation Equations of the Form AX = YB. IEEE Trans. Robot. Autom. 1994, 10, 549–554. [Google Scholar] [CrossRef]
- Enebuse, I.; Foo, M.; Ibrahim, B.S.K.K.; Ahmed, H.; Supmak, F.; Eyobu, O.S. A Comparative Review of Hand-Eye Calibration Techniques for Vision Guided Robots. IEEE Access 2021, 9, 113143–113155. [Google Scholar] [CrossRef]
- Wu, L.; Ren, H. Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3D Position Data. IEEE Trans. Autom. Sci. Eng. 2017, 14, 314–324. [Google Scholar] [CrossRef]
- Wu, L.; Wang, J.; Qi, L.; Wu, K.; Ren, H.; Meng, M.Q.H. Simultaneous Hand-Eye, Tool-Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem. IEEE Trans. Robot. 2016, 32, 413–428. [Google Scholar] [CrossRef]
- Condurache, D.; Ciureanu, I.-A. A Novel Solution for AX=YB Sensor Calibration Problem Using Dual Algebra. In Proceedings of the International Conference on Control, Decision and Information Technologies (CODIT’19), Paris, France, 23–26 April 2019. [Google Scholar]
- Cerjaković, E.; Topčić, A.; Lovrić, S.; Herić, M. Design and Starting up of Automated Assembly Lines in Automotive Industry. In Proceedings of the 13th International Scientific Conference, Novi Sad, Serbia, 28–29 September 2018. [Google Scholar]
- Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar] [CrossRef]
- Janssen, C.; Falk, B.; Schmitt, R. Efficient Commissioning Processes for the Automotive Final Assembly. Key Eng. Mater. 2014, 613, 288–295. [Google Scholar] [CrossRef]
- Rokossa, D. Efficient Robot Programming With-Integrated Functional Modules: Reusing Existing Knowledge in the Commissioning of Industrial Robots. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 10–14. [Google Scholar]
- Lechler, T.; Fischer, E.; Metzner, M.; Mayr, A.; Franke, J. Virtual Commissioning—Scientific Review and Exploratory Use Cases in Advanced Production Systems. Procedia CIRP 2019, 81, 1125–1130. [Google Scholar] [CrossRef]
- Striffler, N.; Voigt, T. Concepts and Trends of Virtual Commissioning—A Comprehensive Review. J. Manuf. Syst. 2023, 71, 664–680. [Google Scholar] [CrossRef]
- Hexagon AB Product Brochure: LEICA ABSOLUTE TRACKER AT403. 2018. Available online: https://pvp-snk.ru/image/data/01Aicon/04Laser-Tracker-Systems/01Absolute-Tracker-AT403/Absolute-Tracker-AT403.pdf (accessed on 2 August 2024).
- Horn, B.K.P. Closed-Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am. A 1986, 4, 629–642. [Google Scholar] [CrossRef]
- One Million Robots Work in Car Industry Worldwide—New Record. Automotive Industry Is a Front Runner in Automation 2023; International Federation of Robotics: Frankfurt, Germany, 2023; Available online: https://ifr.org/ifr-press-releases/news/one-million-robots-work-in-car-industry-worldwide-new-record (accessed on 30 August 2024).
- Bilancia, P.; Schmidt, J.; Raffaeli, R.; Peruzzini, M.; Pellicciari, M. An Overview of Industrial Robots Control and Programming Approaches. Appl. Sci. 2023, 13, 2582. [Google Scholar] [CrossRef]
- Sanneman, L.; Fourie, C.; Shah, J.A.; Delft, B. The State of Industrial Robotics: Emerging Technologies, Challenges, and Key Research Directions. arXiv 2020, arXiv:2010.14537. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Pham, Q.V.; B, P.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A Survey on Enabling Technologies and Potential Applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Garg, G.; Kuts, V.; Anbarjafari, G. Digital Twin for Fanuc Robots: Industrial Robot Programming and Simulation Using Virtual Reality. Sustainability 2021, 13, 10336. [Google Scholar] [CrossRef]
- Tanz, L.; Daub, R. Automated Commissioning of Offline-Generated Robot Programs. Procedia CIRP 2022, 107, 810–814. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, G.; Song, G.; Song, A.; Wen, X. Experimental Analysis on the Effectiveness of Kinematic Error Compensation Methods for Serial Industrial Robots. Math. Probl. Eng. 2021. [Google Scholar] [CrossRef]
- Gharaaty, S.; Shu, T.; Joubair, A.; Xie, W.F.; Bonev, I.A. Online Pose Correction of an Industrial Robot Using an Optical Coordinate Measure Machine System. Int. J. Adv. Robot. Syststems 2018, 15, 1729881418787915. [Google Scholar] [CrossRef]
- Khanesar, M.A.; Yan, M.; Isa, M.; Piano, S.; Branson, D.T. Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches. Sensors 2023, 23, 5368. [Google Scholar] [CrossRef]
- Song, Y.; Liu, M.; Lian, B.; Qi, Y.; Wang, Y.; Wu, J.; Li, Q. Industrial Serial Robot Calibration Considering Geometric and Deformation Errors. Robot. Comput.-Integr. Manuf. 2022, 76, 102328. [Google Scholar] [CrossRef]
- Nubiola, A.; Bonev, I.A. Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker. Robot. Comput.-Integr. Manuf. 2013, 29, 236–245. [Google Scholar] [CrossRef]
- KUKA Roboter GmbH KUKA.XRob APR 2.0—Positionally Accurate Robot. Available online: https://www.kuka.com/ (accessed on 30 August 2024).
- ABB Inc. Absolute Accuracy—Industrial Robot Option. Available online: https://library.e.abb.com/public/931fcb281dbe7fecc1257b1300579a6a/AbsAccPR10072EN_R5.pdf (accessed on 30 August 2024).
- Wisama, K.; Maxime, G.; Philippe, L. Identification of the Payload Inertial Parameters of Industrial Manipulators. In Proceedings of the International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, X.; Cui, L.; Chen, Q. 3 Points Calibration Method of Part Coordinates for Arc Welding Robot. In Intelligent Robotics and Applications: First International Conference, ICIRA 2008, Wuhan, China, 15–17 October 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 216–224. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Deng, B. Fast and Robust Iterative Closest Point. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3450–3466. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M. Rotation Representations and Their Conversions. IEEE Access 2023, 11, 6682–6699. [Google Scholar] [CrossRef]
Provider and Software | Characteristics | Sources (accessed on 1 August 2024): |
Robot dedicated software | Selected robot offline programming, robot environment modelling | |
ABB RobotStudio | https://new.abb.com/products/robotics/ | |
Fanuc RoboGuide | https://www.kuka.com/ | |
KUKA Kuka.Sim | https://www.fanuc.eu/ | |
Staubli Robotics Suite | https://www.staubli.com/ | |
Yaskawa MotoSim EG-VRC | https://www.motoman.com/en-us/products/robots/industrial | |
Robot-independent software | Robot offline programming, environment modeling, production planning | |
Siemens Process Simulate | https://plm.sw.siemens.com/en-US/tecnomatix/products/process-simulate-software/ | |
3ds Delmia | https://www.3ds.com/products/delmia | |
RoboDK | https://robodk.com/ | |
Virtual commissioning software | Windows-based modeling software for DT and hardware actuators | |
WinMod | https://www.winmod.de/ | |
ViPer | https://www.eks-intec.de/ | |
Measuring software | Assignment and alignment of coordinate systems to mechanical stations and collecting position data from measurements | |
PolyWorks Inspector | https://www.innovmetric.com/products/polyworks-inspector | |
Geomagic Control X | https://oqton.com/geomagic-controlx/ |
Laser | Robot | ||||||||
---|---|---|---|---|---|---|---|---|---|
Name | X [mm] | Y [mm] | Z [mm] | X [mm] | Y [mm] | Z [mm] | A [deg] | B [deg] | C [deg] |
P1 | 570.61 | −906.16 | 255.38 | 7117.87 | 2873.18 | 1677.75 | −57.930 | 27.843 | −168.812 |
P2 | 204.88 | −967.38 | −610.15 | 7038.67 | 2937.71 | 771.54 | 67.407 | 1.981 | −154.659 |
P3 | −674.73 | −535.68 | 889.32 | 6690.03 | 1372.91 | 1690.19 | −153.53 | 5.917 | 154.202 |
P4 | −1114.72 | 486.80 | 929.25 | 5668.70 | 1028.90 | 1644.69 | 48.515 | −10.460 | −95.022 |
P5 | −1182.12 | 579.21 | 249.41 | 5651.42 | 1287.94 | 892.77 | −54.790 | 72.622 | 176.770 |
P6 | −611.1 | −214.26 | 845.64 | 6344.99 | 1493.69 | 1600.83 | −130.350 | −9.065 | 89.030 |
P7 | 305.84 | −631.59 | 261.23 | 6838.41 | 2661.65 | 1508.62 | −76.451 | 73.604 | 142.873 |
P8 | 534.7 | −990.66 | −95.23 | 7089.16 | 2981.69 | 1403.89 | 76.353 | −13.774 | −123.964 |
TCP translation | --- | --- | --- | −20.67 | 89.73 | 33.44 | --- | --- | --- |
X [mm] | Y [mm] | Z [mm] | A [deg] | B [deg] | C [deg] | [mm] | |
---|---|---|---|---|---|---|---|
UCS Result | 6125.390 | 2445.560 | 1168.990 | 90.529 | −24.476 | −0.313 | 0.46 |
UCS Simulation | 6130.000 | 2444.711 | 1156.772 | 90.000 | −25.000 | 0.000 | --- |
4.61 | −0.849 | −12.218 | −0.5292 | −0.524 | 0.313 | --- |
Group | [mm] | Amount | Percentage | [mm] | |
---|---|---|---|---|---|
1 | < 10 | 295 | 60.82% | 0.429 | 0.236 |
2 | 10 < < 25 | 79 | 16.29% | 0.432 | 0.219 |
3 | 25 < < 50 | 22 | 4.54% | 0.344 | 0.208 |
4 | 50 < < 100 | 9 | 1.86% | 0.452 | 0.240 |
5 | > 100 | 80 | 16.49% | 0.461 | 0.272 |
Total success rate | --- | 405/485 | 83.51% | 0.431 | 0.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, W.A.; Czop, P. The Effectiveness of a Robotic Workstation Simulation Implementation in the Automotive Industry Using a Closed-Form Solution of the Absolute Orientation Problem. Robotics 2024, 13, 161. https://doi.org/10.3390/robotics13110161
Szulc WA, Czop P. The Effectiveness of a Robotic Workstation Simulation Implementation in the Automotive Industry Using a Closed-Form Solution of the Absolute Orientation Problem. Robotics. 2024; 13(11):161. https://doi.org/10.3390/robotics13110161
Chicago/Turabian StyleSzulc, Wojciech Andrzej, and Piotr Czop. 2024. "The Effectiveness of a Robotic Workstation Simulation Implementation in the Automotive Industry Using a Closed-Form Solution of the Absolute Orientation Problem" Robotics 13, no. 11: 161. https://doi.org/10.3390/robotics13110161
APA StyleSzulc, W. A., & Czop, P. (2024). The Effectiveness of a Robotic Workstation Simulation Implementation in the Automotive Industry Using a Closed-Form Solution of the Absolute Orientation Problem. Robotics, 13(11), 161. https://doi.org/10.3390/robotics13110161