A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage
<p>Concepts for rigid-body guidance include identifying target positions, coordinate transformations, and the displacement pole.</p> "> Figure 2
<p>The pole triangle.</p> "> Figure 3
<p>Vector description of a four-bar linkage.</p> "> Figure 4
<p>The task frames, generated frames, and resulting linkage from the presented method for Example 1.</p> "> Figure 5
<p>The task frames and generated motion curves from various methods for Example 1.</p> "> Figure 6
<p>The task frames and generated frames from various methods for Example 2.</p> "> Figure 7
<p>The task frames, generated frames, motion curve, and linkage for Example 2.</p> "> Figure 8
<p>Task positions for Example 3 before (thick black) and after applying a right translation (thin black). Generated positions are shown for task positions before (thick red) and after right translation (thin red). The thick blue lines are the optimized four-bar linkage seen to be identical in the two solutions. The thin blue lines show the coupler to the original positions (solid) and the right translated positions (dashed).</p> "> Figure 9
<p>Task positions for Example 3 after applying a small left translation (black) and the associated generated positions (red). The fixed frame after applying a left translation is also shown. The thick blue lines are the optimized four-bar matching the linkage shown in <a href="#robotics-13-00013-f008" class="html-fig">Figure 8</a>. The thin blue lines show the coupler to the left translated positions.</p> ">
Abstract
:1. Introduction
2. Concepts Used in Rigid-Body Guidance
2.1. The Displacement Pole
2.2. Using Poles to Determine the Task Positions
2.3. Counting the Required Poles
2.4. Dimensional Synthesis
3. Dimensional Synthesis Optimization
4. Bi-Invariance
4.1. Right Translation
4.2. Left Translation
5. Examples
5.1. Example 1: Task Positions Taken from Ref. [5]
5.2. Example 2: Task Positions Taken from Ref. [9]
5.3. Example 3: Demonstrating Bi-Invariance
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCarthy, J.; Soh, G. Geometric Design of Linkages; Springer: New York, NY, USA, 2010. [Google Scholar]
- Suh, C.H.; Radcliffe, C.W. Kinematics and Mechanism Design; John Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Levitskii, N.I. Design of Plane Mechanisms with Lower Pairs. In Proceedings of the AH CCCP Izdatelstvo Akademii Nauk, Leningrad, Moscow, 1950. [Google Scholar]
- Sarkisyan, Y.L.; Gupta, K.C.; Roth, B. Kinematic Geometry Associated with the Least-square Approximation of a Given Motion. ASME J. Eng. Ind. 1973, 95, 503–510. [Google Scholar] [CrossRef]
- Ravani, B.; Roth, B. Motion Synthesis using Kinematic Mappings. ASME J. Mech. Transm. Autom. Des. 1983, 105, 460–467. [Google Scholar] [CrossRef]
- Larochelle, P.M. Approximate Motion Synthesis of Open and Closed Chains via Parametric Constraint Manifold Fitting: Preliminary Results. In Proceedings of the ASME Design Automation Conference, Chicago, IL, USA, 2–6 September 2003; pp. 1049–1057. [Google Scholar]
- Ge, Q.J.; Zhao, P.; Purwar, A.; Li, X. A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis. J. Comput. Inf. Sci. Eng. 2012, 12, 0041003. [Google Scholar] [CrossRef]
- Ge, Q.J.; Purwar, A.; Zhao, P.; Dephpande, S. A Task-Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds. ASME J. Mech. Robot. 2017, 17, 031011. [Google Scholar] [CrossRef]
- Gogate, G.R.; Matekar, S.B. Optimum synthesis of motion generating four-bar mechanisms using alternate error functions. Mech. Mach. Theory 2012, 54, 41–61. [Google Scholar] [CrossRef]
- Milnor, J. Curvatures of left invariant metrics on lie groups. Adv. Math. 1976, 21, 293–329. [Google Scholar] [CrossRef]
- Martinez, J.M.R.; Duffy, J. On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies. J. Mech. Des. 1995, 117, 41–47. [Google Scholar] [CrossRef]
- Di Gregorio, R. Metrics proposed for measuring the distance between two rigid-body poses: Review, comparison, and combination. Robotica 2024, 42, 302–318. [Google Scholar] [CrossRef]
- Liu, A.X.; Yang, T.L. Finding All Solutions to Unconstrained Nonlinear Optimization for Approximate Synthesis of Planar Linkages Using Continuation Method. J. Mech. Des. 1999, 121, 368–374. [Google Scholar] [CrossRef]
- Erdman, A.G.; Sandor, G.N.; Kota, S. Mechanism Design: Analysis and Synthesis, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001; Volume 1. [Google Scholar]
- Sandor, G.N.; Erdman, A.G. Advanced Mechanism Design: Analysis and Synthesis; Prentice Hall: Englewood Cliffs, NJ, USA, 1984; Volume 2. [Google Scholar]
Location | Orientation (Deg) |
---|---|
(0.00, 0.00) | 40 |
(4.50, 4.00) | 20 |
(8.50, 8.00) | 0 |
(13.00, 11.50) | −30 |
(13.00, 12.50) | −35 |
(9.50, 14.00) | −35 |
(5.00, 13.50) | −30 |
(1.00, 10.50) | −15 |
(−1.00, 6.50) | 0 |
(−1.50, 3.00) | 20 |
Location | Orientation (Deg) |
---|---|
(1.1025, 1.0206) | 54.9693 |
(0.9439, 0.4950) | 72.3439 |
(0.3804, 0.0741) | 80.9533 |
(−0.1340, 0.1014) | 72.1922 |
(−0.3286, 0.5434) | 58.6599 |
(−0.0668, 1.0855) | 49.9219 |
(0.5293, 1.3346) | 47.8367 |
Location | Orientation (Deg) |
---|---|
(5.4925, −5.5813) | 109.2727 |
(6.5759, −4.0083) | 126.6505 |
(6.3082, −2.3480) | 140.3157 |
(5.0394, −1.1357) | 159.4077 |
(3.4334, −1.8575) | 167.6665 |
(0.8025, −3.7452) | 144.6324 |
(−1.8858, −6.0622) | 116.1184 |
(−1.7438, −7.8746) | 103.3444 |
(−0.8606, −8.8435) | 85.9285 |
(1.0690, −9.5115) | 88.2301 |
(2.2986, −8.8865) | 80.0622 |
(4.5038, −7.8714) | 87.0337 |
Translation | G | H | y | z | l | m | J |
---|---|---|---|---|---|---|---|
None | (2.2675, −3.0510) | (−4.4649, 2.5947) | (2.5643, −1.2709) | (4.8371, 4.0034) | 3.9464 | 6.9910 | 72.073 |
, | (2.2659, −3.0512) | (−4.4641, 2.5767) | (−1.7130, 9.5602) | (1.7188, 4.9564) | 3.9409 | 6.9727 | 72.073 |
, | (10.797, −7.8274) | (2.3618, −10.257) | (2.5663, −1.2680) | (4.8394, 4.0052) | 3.9421 | 6.9782 | 72.073 |
, | (2.2668, −3.0453) | (−4.4655, 2.6025) | (3.3224, 168.15) | (6.7562, 163.55) | 3.9542 | 6.9982 | 72.076 |
, | (95.557, −80.241) | (96.340, −88.973) | (2.5683, −1.2665) | (4.8407, 4.0068) | 3.9381 | 6.9636 | 72.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Myszka, D.H.; Murray, A.P. A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage. Robotics 2024, 13, 13. https://doi.org/10.3390/robotics13010013
Xu T, Myszka DH, Murray AP. A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage. Robotics. 2024; 13(1):13. https://doi.org/10.3390/robotics13010013
Chicago/Turabian StyleXu, Tianze, David H. Myszka, and Andrew P. Murray. 2024. "A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage" Robotics 13, no. 1: 13. https://doi.org/10.3390/robotics13010013
APA StyleXu, T., Myszka, D. H., & Murray, A. P. (2024). A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage. Robotics, 13(1), 13. https://doi.org/10.3390/robotics13010013