Robot Localization Using Situational Graphs (S-Graphs) and Building Architectural Plans
<p>Visualization of the proposed approach. Initially, the <span class="html-italic">S-Graph</span>’s topological and metric-semantic layers are generated by extracting data from a building’s architectural plan, made in Revit. Each room <b>R</b>’s four walls are denoted by <math display="inline"><semantics> <msub> <mi>π</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>π</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>π</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>π</mi> <mn>4</mn> </msub> </semantics></math>. Following that, a particle filter is initialized, and particles are dispersed throughout the entire environment. As the robot navigates the environment, it observes the walls and rooms. These observations are converted into each particle’s frame of reference, and global localization is achieved by comparing them to the data extracted from the architectural plans. Finally, the robot tracking layer is added to the <span class="html-italic">S-Graph</span> created in the first step.</p> "> Figure 2
<p>Particle filter algorithm overview. Walls and rooms are detected by using robot odometry and LiDAR data and transformed into each particle’s frame. These observations are then associated with landmark walls and rooms extracted from the architectural plan. Afterward, the particle weights are updated and resampling is performed which eventually gives the initial transformation upon convergence.</p> "> Figure 3
<p>Top view of the particle filter localization with topological rooms information (<b>a</b>) The particles are initialized in the entire floor. (<b>b</b>) Particles form two clusters after the update step. Note the ’clusters’ are formed in 2 rooms with similar geometry. (<b>c</b>) The particles successfully converge in the correct room and the initial pose is published.</p> "> Figure 4
<p>Top view of the initial transformation estimation by our approach in various environments. (<b>a</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>1</mn> </msub> </semantics></math> sequence; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>2</mn> </msub> </semantics></math> sequence; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>3</mn> </msub> </semantics></math> sequence; (<b>d</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>4</mn> </msub> </semantics></math> sequence; (<b>e</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>5</mn> </msub> </semantics></math> sequence; (<b>f</b>) <math display="inline"><semantics> <msub> <mi>D</mi> <mn>6</mn> </msub> </semantics></math> sequence.</p> "> Figure 5
<p>Top view of estimated trajectories for all baselines and our <span class="html-italic">S-Graph Localization</span> in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>1</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. Our <span class="html-italic">S-Graph Localization</span> presents the lowest errors followed by UKF localization. (<b>a</b>) AMCL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) UKFL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>Top view of estimated trajectories for all baselines and our <span class="html-italic">S-Graph Localization</span> in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>2</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. Our <span class="html-italic">S-Graph Localization</span> presents the lowest errors, followed by UKF localization. (<b>a</b>) AMCL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) UKFL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Top view of estimated trajectories for our <span class="html-italic">S-Graph Localization</span> and AMCL in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>3</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. UKF localization failed to localize in this dataset. (<b>a</b>) AMCL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Top view of estimated trajectories for all baselines and our <span class="html-italic">S-Graph Localization</span> in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>4</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. Our <span class="html-italic">S-Graph Localization</span> presents the lowest errors, followed by UKF localization. (<b>a</b>) AMCL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) UKFL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>Top view of estimated trajectories for Our <span class="html-italic">S-Graph Localization</span> and UKF localization in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>5</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. AMCL failed to localize in this dataset. (<b>a</b>) UKFL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>5</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>5</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Top view of estimated trajectories for Our <span class="html-italic">S-Graph Localization</span> and UKF localization in the <math display="inline"><semantics> <msub> <mi>D</mi> <mn>6</mn> </msub> </semantics></math> sequence of our simulated data. The dotted line shows the ground truth trajectory. AMCL failed to localize in this dataset. (<b>a</b>) UKFL <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>6</mn> </msub> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) S-Graph Localization <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>6</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 11
<p>Snapshots of testing of our algorithm in the real-world construction site with a legged robot. (<b>a</b>–<b>c</b>) show the robot being tested in environment <span class="html-italic">BM-1</span> and (<b>d</b>–<b>f</b>) show the robot being tested in environment <span class="html-italic">BM-2</span> as described in <a href="#robotics-12-00065-t004" class="html-table">Table 4</a>.</p> ">
Abstract
:1. Introduction
- Creating topological and metric-semantic layers of S-Graph by extracting geometric, semantic, and topological information of a building from its architectural plan.
- Particle filter-based estimate of the global pose of the robot within the architectural plans using the extracted geometric, semantic as well as topological information.
- Hierarchical S-Graphs [2] based localization of the robot, utilizing the global estimate from the particle filter and the extracted information from the architectural plans.
2. Related Works
2.1. Global Localization
2.2. Architectural Plans Based Localization
2.3. Scene Graph Based Localization
3. Proposed Approach
3.1. Overview
3.2. Building Information Extraction
3.2.1. Rooms Information Extraction
3.2.2. Walls Information Extraction
3.2.3. Topological and Metric-Semantic Layer Generation
3.3. Localization Using Particle Filter
3.3.1. Observations
3.3.2. Landmarks
3.3.3. Prediction
3.3.4. Data Association
3.3.5. Update
3.3.6. Initial Transformation Estimation
3.4. S-Graph Based Localization
- First layer consists of the robot poses at T selected keyframes.
- The second layer is the metric-semantic layer which consists of P detected planes .
- The third and final layer is a topological layer which consists of S rooms , and, K corridors .
3.4.1. Plane Association
3.4.2. Room Association
4. Experimental Evaluation
4.1. Experimental Setup
Building Information Extraction
4.2. Results and Discussion
4.2.1. Simulated Experiments
4.2.2. Real-World Experiments
4.2.3. Ablation Study
4.2.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azhar, S.; Hein, M.; Sketo, B. Building information modeling (BIM): Benefits, risks and challenges. In Proceedings of the 44th ASC Annual Conference, Halifax, NS, Canada, 22–26 September 2008; pp. 2–5. [Google Scholar]
- Bavle, H.; Sanchez-Lopez, J.L.; Shaheer, M.; Civera, J.; Voos, H. Situational Graphs for Robot Navigation in Structured Indoor Environments. IEEE Robot. Autom. Lett. 2022, 7, 9107–9114. [Google Scholar] [CrossRef]
- Desrochers, B.; Lacroix, S.; Jaulin, L. Set-membership approach to the kidnapped robot problem. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 3715–3720. [Google Scholar]
- Kendall, A.; Cipolla, R. Modelling uncertainty in deep learning for camera relocalization. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4762–4769. [Google Scholar]
- Lowry, S.; Sünderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.; Corke, P.; Milford, M.J. Visual place recognition: A survey. IEEE Trans. Robot. 2015, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Miller, I.D.; Cowley, A.; Konkimalla, R.; Shivakumar, S.S.; Nguyen, T.; Smith, T.; Taylor, C.J.; Kumar, V. Any way you look at it: Semantic crossview localization and mapping with lidar. IEEE Robot. Autom. Lett. 2021, 6, 2397–2404. [Google Scholar] [CrossRef]
- Leung, K.Y.K.; Clark, C.M.; Huissoon, J.P. Localization in urban environments by matching ground level video images with an aerial image. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 551–556. [Google Scholar]
- Zuo, X.; Ye, W.; Yang, Y.; Zheng, R.; Vidal-Calleja, T.; Huang, G.; Liu, Y. Multimodal localization: Stereo over LiDAR map. J. Field Robot. 2020, 37, 1003–1026. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. Markov Localization for Reliable Robot Navigation and People Detection. J. Artif. Intell. Res. 1999, 11, 391–427. [Google Scholar] [CrossRef]
- Dellaert, F.; Fox, D.; Thrun, S.; Burgard, W. Monte Carlo Localization for Mobile Robots. 1999. Available online: https://www.ri.cmu.edu/pub_files/pub1/dellaert_frank_1999_2/dellaert_frank_1999_2.pdf (accessed on 28 February 2023).
- Fox, D. KLD-sampling: Adaptive particle filters. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; Volume 14. [Google Scholar]
- Röwekämper, J.; Sprunk, C.; Tipaldi, G.D.; Stachniss, C.; Pfaff, P.; Burgard, W. On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 1999. [Google Scholar]
- Thrun, S.; Fox, D.; Burgard, W. Monte Carlo localization with mixture proposal distribution. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence, Austin, TX, USA, 30 July–3 August 2000; pp. 859–865. [Google Scholar]
- Saarinen, J.; Andreasson, H.; Stoyanov, T.; Lilienthal, A.J. Normal Distributions Transform Monte-Carlo Localization (NDT-MCL). In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013. [Google Scholar]
- Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419841532. [Google Scholar] [CrossRef]
- Rusu, R.; Blodow, N.; Beetz, M. Fast point feature histograms (fpfh) for 3d registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Tombari, F.; Salti, S.; Stefano, L.D. Unique signatures of histograms for local surface description. In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010. [Google Scholar]
- Steder, B.; Ruhnke, M.; Grzonka, S.; Burgard, W. Place recognition in 3d scans using a combination of bag of words and point feature based relative pose estimation. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011. [Google Scholar]
- Rhling, T.; Mack, J.; Schulz, D. Fast histogram-based similarity measure for detecting loop closures in 3-d lidar data. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015. [Google Scholar]
- He, L.; Wang, X.; Zhang, H. M2dp: A novel 3d point cloud descriptor and its application in loop closure detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar]
- Dubé, R.; Cramariuc, A.; Dugas, D.; Sommer, H.; Dymczyk, M.; Nieto, J.; Siegwart, R.; Cadena, C. SegMap: Segment-based mapping and localization using data-driven descriptors. Int. J. Robot. Res. 2020, 39, 339–355. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Kim, J.; Kim, A. Radar Localization and Mapping for Indoor Disaster Environments via Multi-modal Registration to Prior LiDAR Map. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1307–1314. [Google Scholar] [CrossRef]
- Li, Z.; Ang, M.H.; Rus, D. Online Localization with Imprecise Floor Space Maps using Stochastic Gradient Descent. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 8571–8578. [Google Scholar] [CrossRef]
- Boniardi, F.; Valada, A.; Mohan, R.; Caselitz, T.; Burgard, W. Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar] [CrossRef]
- Cui, L.; Rong, C.; Huang, J.; Rosendo, A.; Kneip, L. Monte-Carlo Localization in Underground Parking Lots using Parking Slot Numbers. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 2267–2274. [Google Scholar] [CrossRef]
- Zimmerman, N.; Wiesmann, L.; Guadagnino, T.; Läbe, T.; Behley, J.; Stachniss, C. Robust Onboard Localization in Changing Environments Exploiting Text Spotting. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022. [Google Scholar] [CrossRef]
- Siemiatkowska, B.; Harasymowicz-Boggio, B.; Przybylski, M.; Rozanska-Walczuk, M.; Wisniowski, M.; Kowalski, M. BIM Based Indoor Navigation System of Hermes Mobile Robot. In Proceedings of the 19th CISM-Iftomm Symposium; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Park, J.; Cho, Y.K.; Martinez, D. A BIM and UWB integrated mobile robot navigation system for indoor position tracking applications. J. Constr. Eng. Proj. Manag. 2016, 6, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wei, S.; Zlatanova, S.; Zhang, R. BIM-based indoor path planning considering obstacles. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, 4, 417. [Google Scholar] [CrossRef] [Green Version]
- Asadi, K.; Ramshankar, H.; Noghabaei, M.; Han, K. Real-time image localization and registration with BIM using perspective alignment for indoor monitoring of construction. J. Comput. Civ. Eng 2019, 33, 04019031. [Google Scholar] [CrossRef]
- Moura, M.S.; Rizzo, C.; Serrano, D. BIM-based Localization and Mapping for Mobile Robots in Construction. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 12–18. [Google Scholar] [CrossRef]
- Yin, H.; Liew, J.M.; Lee, W.L.; Ang, M.H.; Yeoh, K.W.-J. Towards BIM-based robot localization: A real-world case study. In Proceedings of the 39th International Symposium on Automation and Robotics in Construction, Bogota, Colombia, 12–15 July 2022. [Google Scholar] [CrossRef]
- Hendrikx, R.W.M.; Pauwels, P.; Torta, E.; Bruyninckx, H.J.; van de Molengraft, M.J.G. Connecting Semantic Building Information Models and Robotics: An application to 2D LiDAR-based localization. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11654–11660. [Google Scholar] [CrossRef]
- Kim, U.; Park, J.; Song, T.; Kim, J. 3-D Scene Graph: A Sparse and Semantic Representation of Physical Environments for Intelligent Agents. IEEE Trans. Cybern. 2019, 50, 4921–4933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armeni, I.; He, Z.Y.; Gwak, J.; Zamir, A.R.; Fischer, M.; Malik, J.; Savarese, S. 3D Scene Graph: A structure for unified semantics, 3D space, and camera. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5664–5673. [Google Scholar]
- Wu, S.C.; Wald, J.; Tateno, K.; Navab, N.; Tombari, F. SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Rosinol, A.; Gupta, A.; Abate, M.; Shi, J.; Carlone, L. 3D dynamic scene graphs: Actionable spatial perception with places, objects, and humans. arXiv 2020, arXiv:2002.06289. [Google Scholar]
- Hughes, N.; Chang, Y.; Carlone, L. Hydra: A Real-time Spatial Perception Engine for 3D Scene Graph Construction and Optimization. arXiv 2022, arXiv:2201.13360. [Google Scholar]
- Qin, C.; Zhang, Y.; Liu, Y.; Lv, G. Semantic loop closure detection based on graph matching in multi-objects scenes. J. Vis. Commun. Image Represent. 2021, 76, 103072. [Google Scholar] [CrossRef]
- Gawel, A.; Del Don, C.; Siegwart, R.; Nieto, J.; Cadena, C. X-View: Graph-Based Semantic Multi-View Localization. IEEE Robot. Autom. Lett. 2018, 3, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Hu, J.; Chen, J.; Deng, F.; Lam, T.L. Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment. IEEE Robot. Autom. Lett. 2021, 6, 8349–8356. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Tang, F.; Jiang, H.; Wu, Y.; Liu, Y. Lightweight Object-level Topological Semantic Mapping and Long-term Global Localization based on Graph Matching. arXiv 2022, arXiv:2201.05977. [Google Scholar] [CrossRef]
- Liu, Y.; Petillot, Y.; Lane, D.; Wang, S. Global Localization with Object-Level Semantics and Topology. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4909–4915. [Google Scholar] [CrossRef]
- Thein, V. Industry foundation classes (IFC). In BIM Interoperability through a Vendor-Independent File Format; Bentley: Crewe, UK, 2011; p. 152. [Google Scholar]
- Zhou, L.; Koppel, D.; Kaess, M. LiDAR SLAM With Plane Adjustment for Indoor Environment. IEEE Robot. Autom. Lett. 2021, 6, 7073–7080. [Google Scholar] [CrossRef]
- Geneva, P.; Eckenhoff, K.; Yang, Y.; Huang, G. LIPS: LiDAR-Inertial 3D Plane SLAM. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 123–130. [Google Scholar] [CrossRef]
- Quigley, M. ROS: An open-source Robot Operating System. In Proceedings of the International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
Method | APE [m] ↓ | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
D1 | D2 | D3 | D4 | D5 | D6 | |
AMCL [11] | 2.04 | 1.71 | 2.03 | 2.01 | − | − |
UKFL [15] | 0.97 | 0.78 | − | 0.74 | 0.70 | 0.88 |
S-Graph Localization (ours) | 0.28 | 0.15 | 0.20 | 0.24 | 0.29 | 0.22 |
Method | Convergence Rate [%] | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
AMCL [11] | 100 | 100 | 50 | 40 | − | − |
UKFL [15] | 100 | 100 | − | 70 | 40 | 70 |
S-Graph Localization (ours) | 100 | 100 | 60 | 50 | 50 | 80 |
Method | Time [s] ↓ | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
AMCL [11] | 22 | 27 | 76 | 69 | − | − |
UKFL [15] | 16 | 25 | − | 83 | 88 | 71 |
S-Graph Localization (ours) | 16 | 23 | 72 | 69 | 73 | 65 |
Alignment Error [m] ↓ | |||
---|---|---|---|
Datasets | |||
Method | BM-1 | BM-2 | BM-3 |
AMCL [11] | 0.98 | − | − |
UKFL [15] | 0.43 | 0.27 | 1.03 |
S-Graph Localization (ours) | 0.285 | 0.25 | 0.99 |
Method | Time [s] ↓ | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
S-Graph Localization (ours) | 27 | 33 | 97 | 93 | 115 | 103 |
Method | Convergence Rate [%] | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
S-Graph Localization (ours) | 50 | 50 | 30 | 30 | 20 | 40 |
Method | APE [m] ↓ | |||||
---|---|---|---|---|---|---|
Datasets | ||||||
S-Graph Localization (ours) | 0.30 | 0.16 | 0.20 | 0.24 | 0.31 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheer, M.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. Robot Localization Using Situational Graphs (S-Graphs) and Building Architectural Plans. Robotics 2023, 12, 65. https://doi.org/10.3390/robotics12030065
Shaheer M, Bavle H, Sanchez-Lopez JL, Voos H. Robot Localization Using Situational Graphs (S-Graphs) and Building Architectural Plans. Robotics. 2023; 12(3):65. https://doi.org/10.3390/robotics12030065
Chicago/Turabian StyleShaheer, Muhammad, Hriday Bavle, Jose Luis Sanchez-Lopez, and Holger Voos. 2023. "Robot Localization Using Situational Graphs (S-Graphs) and Building Architectural Plans" Robotics 12, no. 3: 65. https://doi.org/10.3390/robotics12030065
APA StyleShaheer, M., Bavle, H., Sanchez-Lopez, J. L., & Voos, H. (2023). Robot Localization Using Situational Graphs (S-Graphs) and Building Architectural Plans. Robotics, 12(3), 65. https://doi.org/10.3390/robotics12030065