A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics †
<p>The different mapping pipelines used to create a map of an unknown environment.</p> "> Figure 2
<p>The images and poses are used as inputs for NeRF [<a href="#B30-robotics-12-00039" class="html-bibr">30</a>] to generate a 3D rendering of the captured object. The standard set of images have a lower resolution in a unit area as compared to the images taken closer to surface. The differences in results are not too noticeable from the far viewpoint, but the differences can clearly be seen from the close viewpoint.</p> "> Figure 3
<p>The proposed multistage approach for autonomous high-precision mapping consists of three steps. Step 1 constructs a globally accurate coarse map to be used in the latter steps. Steps 1 and 2 use the coarse map to as prior information to focus on high precision. Step 2 plans a path for the robot observations to achieve the desired metrics. Step 3 adjusts the path to assure the metrics are met and the data are suitable for high precision mapping.</p> "> Figure 4
<p>Diagram of an indoor environment with a depth sensor making an observation on a planar wall.</p> "> Figure 5
<p>Unit viewing area for a sensor at a given distance, given by rotating the field of view and inscribing a square into the union of all of the fields of view.</p> "> Figure 6
<p>Resultant OGM (<b>a</b>) and UDM (<b>b</b>) created from the coarse map.</p> "> Figure 7
<p>Pixels (cyan color) selected to make up the offline path.</p> "> Figure 8
<p>Resulting 3D offline path of a room with two horizontal layers (red paths) and three vertical layers (green paths). The object located at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> does not reach the upper-most layer.</p> "> Figure 9
<p>Two examples of synthetic maps used for the validation of Step 2. The planned paths are indicated with the dotted lines around the objects, and the arrows show the sequential movement.</p> "> Figure 10
<p>Box plots of the computationaltime with respect to the map size and the object number in the environment.</p> "> Figure 11
<p>Known structures for testing the resolution and local accuracy of the proposed method. (<b>a</b>) Periodic surface, (<b>b</b>) non-periodic surface, (<b>c</b>) flat surface.</p> "> Figure 12
<p>Histogram of local resolution for the controlled environments.</p> "> Figure 13
<p>Histogram of local accuracy for the controlled environments.</p> "> Figure 14
<p>UGV used for map refinement and the environment of the real-world experiment. (<b>a</b>) UGV with manipulator, (<b>b</b>) Test environment obstacles and furniture.</p> "> Figure 15
<p>Resulting 3D offline path created during Step 2.</p> "> Figure 16
<p>Comparisons of the resulting NeRF [<a href="#B30-robotics-12-00039" class="html-bibr">30</a>] renderings using different techniques to estimate the poses of the images. (<b>a</b>) Poses generated with COLMAP [<a href="#B31-robotics-12-00039" class="html-bibr">31</a>]. (<b>b</b>) Poses generated with ICP localization using a rotating 3D LiDAR. (<b>c</b>) Poses generated using the proposed multistage framework.</p> "> Figure 16 Cont.
<p>Comparisons of the resulting NeRF [<a href="#B30-robotics-12-00039" class="html-bibr">30</a>] renderings using different techniques to estimate the poses of the images. (<b>a</b>) Poses generated with COLMAP [<a href="#B31-robotics-12-00039" class="html-bibr">31</a>]. (<b>b</b>) Poses generated with ICP localization using a rotating 3D LiDAR. (<b>c</b>) Poses generated using the proposed multistage framework.</p> "> Figure A1
<p>Coarse global map created using the conventional SLAM technique (RTAB-Map [<a href="#B42-robotics-12-00039" class="html-bibr">42</a>]).</p> "> Figure A2
<p>OGMs of the test environment at different layers. (<b>a</b>) Floor layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.222</mn> </mrow> </semantics></math> m). (<b>b</b>) Ceiling layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.0253</mn> </mrow> </semantics></math> m). (<b>c</b>) First layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>1.29</mn> </mrow> </semantics></math> m). (<b>d</b>) Second layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.514</mn> </mrow> </semantics></math> m). (<b>e</b>) Third layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.266</mn> </mrow> </semantics></math> m). (<b>f</b>) Fourth layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> m).</p> "> Figure A3
<p>UDMs of the test environment at different layers. (<b>a</b>) First layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>1.29</mn> </mrow> </semantics></math> m). (<b>b</b>) Second layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.514</mn> </mrow> </semantics></math> m). (<b>c</b>) Third layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.266</mn> </mrow> </semantics></math> m). (<b>d</b>) Fourth layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> m).</p> "> Figure A4
<p>Pixels selected to compose the path for the test environment at different layers. (<b>a</b>) First layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>1.29</mn> </mrow> </semantics></math> m). (<b>b</b>) Second layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.514</mn> </mrow> </semantics></math> m). (<b>c</b>) Third layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.266</mn> </mrow> </semantics></math> m). (<b>d</b>) Fourth layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> m).</p> "> Figure A5
<p>The paths planned for the test environment at different layers. (<b>a</b>) Floor layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.222</mn> </mrow> </semantics></math> m). (<b>b</b>) Ceiling layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.0253</mn> </mrow> </semantics></math> m). (<b>c</b>) First layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>1.29</mn> </mrow> </semantics></math> m). (<b>d</b>) Second layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>0.514</mn> </mrow> </semantics></math> m). (<b>e</b>) Third layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.266</mn> </mrow> </semantics></math> m). (<b>f</b>) Fourth layer (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> m).</p> "> Figure A6
<p>Practical experiment in a machine room with narrow spaces. (<b>a</b>) Image of machine room. (<b>b</b>) Map created using the proposed framework by registering the point clouds.</p> "> Figure A7
<p>Practical experiment in a robotics laboratory with long horizontal spaces. (<b>a</b>) Image of robotics laboratory, (<b>b</b>) Map created using the proposed framework by registering the point clouds.</p> "> Figure A8
<p>Practical experiment in a nuclear reactor’s silo with tall vertical spaces. (<b>a</b>) Image of the nuclear reactor’s silo. (<b>b</b>) Map created using the proposed framework by registering the point clouds.</p> ">
Abstract
:1. Introduction
2. Mapping and Exploration
2.1. Mapping of an Unknown Environment
2.2. Exploration and Navigation
2.3. Need for a Multistage Approach
3. Autonomous Robotic Data Collection
3.1. Step 1: Globally Accurate Coarse Mapping
3.2. Step 2: Offline 3D Path Planning for Complete Surface Coverage
3.3. Step 3: Online Path Optimization for Targeted Metrics
4. Numerical/Experimental Validation
4.1. Planning Performance of Step 2
4.2. Local Metric Evaluation of Structure from Step 3
4.3. Autonomous Map Creation of a Practical Environment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Step 2 Data for a Practical Office Environment
Appendix A.1. Globally Accurate Coarse Map
Appendix A.2. Parameters and Calculated Values
Parameter | Value |
---|---|
(mm) | 1 |
(pixel/mm) | 1 |
Coarse map SLAM package | RTAB-Map [42] |
3D LiDAR | Ouster OS1-16 |
Depth camera | Intel L515 |
H (deg) | 70 |
V (deg) | 43 |
(%) | 0.155 |
m by n (pixels) | 1080 × 1920 |
, | 1, 1 |
Parameter | Value |
---|---|
(m) | 1.46 |
(m) | −1.68 |
(m) | 1.44 |
, (m) | −0.222, −0.0253 |
(m) | 0.814 |
(layers) | 4 |
(m) | −1.29, −0.514, 0.266, 1.04 |
Appendix A.3. Occupancy Grid Maps (OGMs)
Appendix A.4. Unoccupancy Distance Maps (UDMs)
Appendix A.5. Pixels Selected for Path Planning
Appendix A.6. Connected Paths for Each Layer
Appendix B. Results from Other Practical Environments
Appendix B.1. Machine Room
Appendix B.2. Robotics Laboratory
Appendix B.3. Nuclear Reactor Silo
References
- Santagati, C.; Lo Turco, M. From structure from motion to historical building information modeling: Populating a semantic-aware library of architectural elements. J. Electron. Imaging 2017, 26, 011007. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M.; Lin, Y.; Huang, X.; Huang, K.; He, Y.; Li, L. Vision-Based Three-Dimensional Reconstruction and Monitoring of Large-Scale Steel Tubular Structures. Adv. Civ. Eng. 2020, 2020, 1236021. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Li, W.; Jiang, B.; Xiao, J. Semantic Metric 3D Reconstruction for Concrete Inspection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1624–16248. [Google Scholar] [CrossRef]
- Prewett, M.S.; Johnson, R.C.; Saboe, K.N.; Elliott, L.R.; Coovert, M.D. Managing workload in human–robot interaction: A review of empirical studies. Comput. Hum. Behav. 2010, 26, 840–856. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lai, Y.S.; Lin, Y.H. BIM-based augmented reality inspection and maintenance of fire safety equipment. Autom. Constr. 2020, 110, 103041. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Wang, Q. Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR. Remote Sens. 2020, 12, 2492. [Google Scholar] [CrossRef]
- Suyatinov, S.I. Conceptual Approach to Building a Digital Twin of the Production System. In Cyber-Physical Systems: Advances in Design & Modelling; Studies in Systems, Decision and Control; Kravets, A.G., Bolshakov, A.A., Shcherbakov, M.V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 279–290. [Google Scholar] [CrossRef]
- Asadi, K.; Haritsa, V.R.; Han, K.; Ore, J.P. Automated Object Manipulation Using Vision-Based Mobile Robotic System for Construction Applications. J. Comput. Civ. Eng. 2021, 35, 04020058. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, P.; Zhao, S. Robust Localization of Occluded Targets in Aerial Manipulation Via Range-Only Mapping. IEEE Robot. Autom. Lett. 2022, 7, 2921–2928. [Google Scholar] [CrossRef]
- Smith, W.; Qin, Y.; Furukawa, T.; Dissanayake, G. Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy. In Proceedings of the 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain, 8–10 November 2022; pp. 130–137. [Google Scholar] [CrossRef]
- Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient Sparse Pose Adjustment for 2D mapping. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 22–29. [Google Scholar] [CrossRef] [Green Version]
- Servières, M.; Renaudin, V.; Dupuis, A.; Antigny, N. Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. J. Sens. 2021, 2021, 2054828. [Google Scholar] [CrossRef]
- Dissanayake, M.; Newman, P.; Clark, S.; Durrant-Whyte, H.; Csorba, M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, J.A.; Neira, J.; Tardós, J.D. Limits to the consistency of EKF-based SLAM. IFAC Proc. Vol. 2004, 37, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar] [CrossRef] [Green Version]
- Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [Google Scholar] [CrossRef] [Green Version]
- Yoder, L.; Scherer, S. Autonomous Exploration for Infrastructure Modeling with a Micro Aerial Vehicle. In Field and Service Robotics: Results of the 10th International Conference; Springer Tracts in Advanced Robotics; Wettergreen, D.S., Barfoot, T.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 427–440. [Google Scholar] [CrossRef]
- Song, S.; Jo, S. Online inspection path planning for autonomous 3D modeling using a micro-aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6217–6224. [Google Scholar] [CrossRef]
- Song, S.; Jo, S. Surface-Based Exploration for Autonomous 3D Modeling. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 4319–4326. [Google Scholar] [CrossRef]
- Wang, Y.; James, S.; Stathopoulou, E.K.; Beltran-Gonzalez, C.; Konishi, Y.; Del Bue, A. Autonomous 3-D Reconstruction, Mapping, and Exploration of Indoor Environments With a Robotic Arm. IEEE Robot. Autom. Lett. 2019, 4, 3340–3347. [Google Scholar] [CrossRef]
- Wang, Y.; Del Bue, A. Where to Explore Next? ExHistCNN for History-Aware Autonomous 3D Exploration. In Computer Vision—ECCV 2020; Lecture Notes in Computer Science; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 125–140. [Google Scholar] [CrossRef]
- Lauri, M.; Pajarinen, J.; Peters, J.; Frintrop, S. Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization. IEEE Robot. Autom. Lett. 2020, 5, 5323–5330. [Google Scholar] [CrossRef]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Häming, K.; Peters, G. The structure-from-motion reconstruction pipeline—A survey with focus on short image sequences. Kybernetika 2010, 46, 926–937. [Google Scholar]
- Nurutdinova, I.; Fitzgibbon, A. Towards Pointless Structure from Motion: 3D Reconstruction and Camera Parameters from General 3D Curves. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2363–2371. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Liu, S.; Efros, A.A.; Wang, X. Video Autoencoder: Self-supervised disentanglement of static 3D structure and motion. arXiv 2021, arXiv:2110.02951. [Google Scholar] [CrossRef]
- Yu, A.; Li, R.; Tancik, M.; Li, H.; Ng, R.; Kanazawa, A. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 5752–5761. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. arXiv 2020, arXiv:2003.08934. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Las Vegas, NV, USA, 2016; pp. 4104–4113. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Xie, W.; Chen, M.; Prisacariu, V.A. NeRF–: Neural Radiance Fields Without Known Camera Parameters. arXiv 2021, arXiv:2102.07064. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, A.; Luo, H.; Wu, M.; Su, H.; Xu, L.; He, X.; Yu, J. GNeRF: GAN-based Neural Radiance Field without Posed Camera. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 6331–6341. [Google Scholar] [CrossRef]
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 698–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, R.; Vidal, H.; Vieira, P.; Ribeiro, M. Complete coverage path planning and guidance for cleaning robots. In Proceedings of the ISIE ’97 IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, 7–11 July 1997; Volume 2, pp. 677–682. [Google Scholar] [CrossRef]
- Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon path planning for 3D exploration and surface inspection. Auton. Robot. 2018, 42, 291–306. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Liu, H.; Chen, P.; Zhou, Z. Automatic inspection data collection of building surface based on BIM and UAV. Autom. Constr. 2021, 131, 103881. [Google Scholar] [CrossRef]
- Logothetis, S.; Delinasiou, A.; Stylianidis, E. Building Information Modelling for Cultural Heritage: A review. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II5, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151. [Google Scholar] [CrossRef] [Green Version]
- Visser, A.; Xingrui-Ji; van Ittersum, M.; González Jaime, L.A.; Stancu, L.A. Beyond Frontier Exploration. In RoboCup 2007: Robot Soccer World Cup XI; Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 113–123. [Google Scholar]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and Service Robotics; Zelinsky, A., Ed.; Springer: London, UK, 1998; pp. 203–209. [Google Scholar]
- Velednitsky, M. Short combinatorial proof that the DFJ polytope is contained in the MTZ polytope for the Asymmetric Traveling Salesman Problem. Oper. Res. Lett. 2017, 45, 323–324. [Google Scholar] [CrossRef] [Green Version]
- Woeginger, G.J. Exact Algorithms for NP-Hard Problems: A Survey. In Combinatorial Optimization—Eureka, You Shrink!: Papers Dedicated to Jack Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised Papers; Jünger, M., Reinelt, G., Rinaldi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 185–207. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.S.; McGeoch, L.A. The Traveling Salesman Problem: A Case Study in Local Optimization. Local Search Comb. Optim. 1997, 1, 215–310. [Google Scholar]
- LaValle, S.M. Planning Algorithms, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Dissanayake, M.W.M.G.; Goh, C.J.; Phan-Thien, N. Time-optimal Trajectories for Robot Manipulators. Robotica 1991, 9, 131–138. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Map resolution (m/grid) | 0.2 |
Map size (square, m) | 6, 8, 10, 12, 14 |
Object type | Square, circle, triangle |
Object size (m) | 0.5, 1, 1.5, 2, 2.5 |
Number of synthetic maps | 200 |
TSP solver | Greedy-based |
Linking of unconnected points | D-star motion planning |
Distance to objects (m) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, W.; Qin, Y.; Singh, S.; Burke, H.; Furukawa, T.; Dissanayake, G. A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics 2023, 12, 39. https://doi.org/10.3390/robotics12020039
Smith W, Qin Y, Singh S, Burke H, Furukawa T, Dissanayake G. A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics. 2023; 12(2):39. https://doi.org/10.3390/robotics12020039
Chicago/Turabian StyleSmith, William, Yongming Qin, Siddharth Singh, Hudson Burke, Tomonari Furukawa, and Gamini Dissanayake. 2023. "A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics" Robotics 12, no. 2: 39. https://doi.org/10.3390/robotics12020039
APA StyleSmith, W., Qin, Y., Singh, S., Burke, H., Furukawa, T., & Dissanayake, G. (2023). A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics, 12(2), 39. https://doi.org/10.3390/robotics12020039