The Archimede Rover: A Comparison between Simulations and Experiments
<p>In (<b>a</b>), the schematic representation of the single leg of the rover with respect to the chassis; in (<b>b</b>), the complete rover schematic representation.</p> "> Figure 2
<p>(<b>a</b>) The general Ackermann steering schematic representation for a four-wheel steering vehicle. (<b>b</b>) The graphical representation of the admissible ICR location for the case of two wheels.</p> "> Figure 3
<p>In black: the admissible regions for the ICR belonging to the set <math display="inline"><semantics> <msup> <mi>S</mi> <mo>+</mo> </msup> </semantics></math>; in white: the ineligible surfaces belonging to <math display="inline"><semantics> <msup> <mi>S</mi> <mo>−</mo> </msup> </semantics></math>.</p> "> Figure 4
<p>Mosaic of some of the driving modes identified for the Archimede rover: (<b>a</b>) Car-Like, (<b>b</b>) Symmetric steering, (<b>c</b>) In-Place rotation, (<b>d</b>) Lateral drive, (<b>e</b>) Parallel Drive, (<b>f</b>) example of Inner Ackermann.</p> "> Figure 5
<p>High-level controller architecture diagram for the Archimede rover system. Here, the complete control loop is shown, starting from the navigation planner and down to the controllers in the DYNAMIXEL XM430-W350-R servomotors (indicated with the “M” block) used for the wheels and for the steering.</p> "> Figure 6
<p>The Archimede rover in the Gazebo simulation environment.</p> "> Figure 7
<p>Experimental setup. (<b>a</b>) The DLR PEL sandbox and the rover climbing a 20<math display="inline"><semantics> <mo>°</mo> </semantics></math> slope. (<b>b</b>) The two types of soil, shown side by side.</p> "> Figure 8
<p>Archimede rover wheels: (<b>a</b>) low grousers for Test Setup A, (<b>b</b>) high grousers for Test Setup B.</p> "> Figure 9
<p>Comparison between the real trajectories (tracking) and the position estimation through wheels odometry for (<b>a</b>) the 20<math display="inline"><semantics> <mo>°</mo> </semantics></math> diagonal line; (<b>b</b>) the quarter circle of radius <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>; (<b>c</b>) the s-like path of radius <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>; (<b>d</b>) the square path.</p> "> Figure 10
<p>Error estimation of trajectories compared to the nominal path for (<b>a</b>) the 20<math display="inline"><semantics> <mo>°</mo> </semantics></math> diagonal line; (<b>b</b>) the quarter circle of radius <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>; (<b>c</b>) the s-like path of radius <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>; (<b>d</b>) the square path. Note: in (<b>d</b>), the “tracking (gazebo)” line is almost identical to the “odometry (gazebo)” line, and thus, it is not clearly visible.</p> "> Figure 11
<p>(<b>a</b>) An example of vertical displacement for a square sample trajectory obtained with the PEL optical tracking system. (<b>b</b>) The end-point relative position error between the odometric position estimation and the real position for all the paths selected and for both numeric and experimental tests.</p> "> Figure 12
<p>Median trends of slip percentage <span class="html-italic">s</span> results for various slopes <math display="inline"><semantics> <mi>σ</mi> </semantics></math>, grouped by velocities <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math>. The <span class="html-italic">x</span>-axis represents the slope angle in degrees, while the <span class="html-italic">y</span>-axis indicates the slip percentage. Figure (<b>a</b>) illustrates the results for Test Setup A, while figure (<b>b</b>) showcases the results for Test Setup B.</p> "> Figure 13
<p>Box plots displaying slip percentage <span class="html-italic">s</span> results for various slopes <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. The results are not grouped by velocity. The <span class="html-italic">x</span>-axis represents the slope angle in degrees, while the <span class="html-italic">y</span>-axis indicates the slip percentage. The red line indicates the median. Figure (<b>a</b>) illustrates the results for Test Setup A, while figure (<b>b</b>) showcases the results for Test Setup B.</p> "> Figure 14
<p>Box plots displaying slip percentage <span class="html-italic">s</span> results with respect to velocities <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math>, grouped by test setup and slope <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. The red line indicates the median. Figures (<b>a</b>–<b>d</b>), i.e., the first row, report the results for Test Setup A, while figures (<b>e</b>–<b>h</b>), i.e., the second row, showcase the results for Test Setup B. Figures (<b>a</b>,<b>e</b>), i.e., the first column, display the results for when the sandbox’s slope, <math display="inline"><semantics> <mi>σ</mi> </semantics></math>, equals to 5<math display="inline"><semantics> <mo>°</mo> </semantics></math>; in figures (<b>b</b>,<b>f</b>), i.e., the second column, <math display="inline"><semantics> <mi>σ</mi> </semantics></math> equals to 10<math display="inline"><semantics> <mo>°</mo> </semantics></math>; in figures (<b>c</b>,<b>g</b>), i.e., the third column, <math display="inline"><semantics> <mi>σ</mi> </semantics></math> equals to 15<math display="inline"><semantics> <mo>°</mo> </semantics></math>; in figures (<b>d</b>,<b>h</b>), i.e., the fourth column, <math display="inline"><semantics> <mi>σ</mi> </semantics></math> equals to 20<math display="inline"><semantics> <mo>°</mo> </semantics></math>.</p> ">
Abstract
:1. Introduction
- The development of a purely geometrical ICR-based control system that is compatible with the limited range of motion of the four wheels’ independent steering. We propose the mathematical foundations, characterize the method, and provide a critical analysis of shortcomings.
- The development of a robust odometric system for a rover with four steerable wheels. The resulting algorithm accepts data from the wheels’ revolutions, takes care of the inherent redundancy of information, and delivers the estimated position via ROS network to the controller for data acquisition and comparison.
- The development of various ROS packages for the Archimede rover simulations in Gazebo, to mainly allow for: the control of the simulated robot, the data acquisition of the estimated odometric position, and the acquisition of the ground-truth trajectory.
- Experimental tests in a sandbox with the very fine lunar regolith simulant EAC-1A and with a coarser tephra-based gravel (pyroclasts). We consider two different kinds of simulants, in order to evaluate the performance of the rover in different soil conditions.
- A numerical and experimental comprehensive comparison of the effectiveness of the odometric system. The physical rover experiences rough and loose terrain, as well as the flexibility of parts of its S-structure chassis, while the simulated rover simplifies some of these aspects (rigid S-structure, terrain), while it does simulate others (central differential bogie). On top of this, the odometric system assumes the differential bogie as fixed. All of these naturally translate in a slightly different response, which we systematically show in the results.
- Evaluation of the reality gap that arises when simulating a complex rover system traveling soft soil with a massless spring-damper based soil model implemented in the Gazebo dynamics simulator.
2. Model
2.1. Odometric System
2.2. Steering Control
2.2.1. General Ackermann Steering
2.2.2. ICR Projection Approach
2.2.3. Drive Modes
- Car-Like mode: the steering joints of the rear wheels are locked, and hence, the rover ICR is constrained to pose along the driving axis of the rear wheels of the rover. In this configuration, only the front wheels are allowed to steer, the same as regular cars.
- Symmetric Ackermann mode: Very similar to the previous mode, differing from it only because in this specific driving mode the ICR of the rover is constrained to be along a line passing through the origin of the rover and coincident with its -axis.
- In-Place rotation: The ICR is unique and coincides with the center of the rover. In this driving mode, the rover is characterized by not having any linear speed, while the wheels are arranged in such a configuration that allow the rover to rotate on the spot. This derives from the Symmetric Ackermann mode.
- Lateral Drive mode: The ICR formally does not exist. In practice, it is located somewhere along the axis of the rover frame and infinitely away from it. It follows that the wheels are turned by 90° around their steering axis, thus allowing the rover to move sideways.
- Parallel Drive mode: As in the previous case, the ICR formally does not exist. The wheels are characterized by the fact that they turn with the same steering angle , thus allowing the robot to move in a parallel way. The rover possesses only components of linear velocities, but not angular velocity.
- Outer Ackermann mode: With reference to Figure 3, this driving mode has been derived by considering in the set of the admissible ICR surfaces only the two large ones placed on the side of the rover. It is apparent that the two cases of the Car-Like and Symmetric Ackermann are particular cases of this bigger driving mode case.
- Inner Ackermann mode: This drive mode has been derived by considering in the set of ICR eligibility surfaces only the central surface located under the belly of the rover, which is visible in Figure 3. It is apparent that the In Place rotation mode is a degenerate case of this bigger driving mode case.
- General Ackermann mode: This driving mode has been obtained by combining the previous modes, i.e., by considering every surface belonging to .
2.2.4. Controller Architecture
3. Comparison—Study Preparation
3.1. Test Modes
3.1.1. Driving on Flat Terrain
3.1.2. Driving on an Inclined Plane
3.2. Simulation Framework Setup
Listing 1. Short example of the modeling in xacro/URDF robot description files. Here, the code is the structure of a xacro macro that describes a two-link one-joints kinematic chain composed of link_1 and link_2 connected through joint joint_1. |
3.3. Experimental Testbed Setup
- Test Setup A
- The sandbox of the PEL had been filled with granular lava having grain sizes in between 1 and 5 and the Archimede rover has been equipped with a set of wheels with low grousers, which can be seen from Figure 8a.
- Test Setup B
4. Results and Discussion
4.1. Results for the Test Case of Driving on a Flat Terrain
- Gazebo simulations. The sources of error in this case are essentially related to the dynamics of the system and the interaction with the ground, which is modeled as a planar hard surface with friction. The effect these aspect have on the trajectory appear somewhat negligible.
- Experimental odometry. In this case, the sources of error are many and more diverse, primarily: terrain yield, slip, non-planar terrain, and non-uniform soil. We can, thus, expect that the rover drifts more substantially from the intended path. Experimental results show this quite clearly.
4.2. Results for the Test Case of Driving on Inclined Plane—Slip Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caruso, M.; Scalera, L.; Gallina, P.; Seriani, S. Dynamic modeling and simulation of a robotic lander based on variable radius drums. Appl. Sci. 2020, 10, 8862. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, P.; Zhang, X.; Zhu, H.; Cai, G. Multi-Objective, Multi-Disciplinary Design Optimization and Multi-Attribute Evaluation of Hybrid Rocket Motors Used for Manned Lunar Lander. Aerospace 2023, 10, 272. [Google Scholar] [CrossRef]
- Grotzinger, J.; Crisp, J.; Vasavada, A.; Anderson, R.; Baker, C.; Barry, R.; Blake, D.; Conrad, P.; Edgett, K.; Ferdowski, B.; et al. Mars Science Laboratory mission and science investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef]
- Muirhead, B.; Karp, A. Mars Sample Return Lander Mission Concepts. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 2–9 March 2019; Volume 2019. [Google Scholar]
- Campagnola, S.; Yam, C.; Tsuda, Y.; Naoko, O.; Kawakatsu, Y. Mission analysis for the Martian Moons Explorer (MMX) mission. Acta Astronaut. 2018, 146, 409–417. [Google Scholar] [CrossRef]
- Newman, C.E.; Hueso, R.; Lemmon, M.T.; Munguira, A.; Vicente-Retortillo, Á.; Apestigue, V.; Martínez, G.M.; Toledo, D.; Sullivan, R.; Herkenhoff, K.E.; et al. The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Sci. Adv. 2022, 8, eabn3783. [Google Scholar] [CrossRef] [PubMed]
- Mahaffy, P.; Webster, C.; Cabane, M.; Conrad, P.; Coll, P.; Atreya, S.; Arvey, R.; Barciniak, M.; Benna, M.; Bleacher, L.; et al. The sample analysis at mars investigation and instrument suite. Space Sci. Rev. 2012, 170, 401–478. [Google Scholar] [CrossRef]
- Webster, C.; Mahaffy, P.; Atreya, S.; Moores, J.; Flesch, G.; Malespin, C.; McKay, C.; Martinez, G.; Smith, C.; Martin-Torres, J.; et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 2018, 360, 1093–1096. [Google Scholar] [CrossRef]
- Lapotre, M.; Ewing, R.; Lamb, M.; Fischer, W.; Grotzinger, J.; Rubin, D.; Lewis, K.; Ballard, M.; Day, M.; Gupta, S.; et al. Large wind ripples on Mars: A record of atmospheric evolution. Science 2016, 353, 55–58. [Google Scholar] [CrossRef]
- Schuster, M.; Muller, M.; Brunner, S.; Lehner, H.; Lehner, P.; Sakagami, R.; Domel, A.; Meyer, L.; Vodermayer, B.; Giubilato, R.; et al. The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration. IEEE Robot. Autom. Lett. 2020, 5, 5315–5322. [Google Scholar] [CrossRef]
- Wedler, A.; Schuster, M.; Müller, M.; Vodermayer, B.; Meyer, L.; Giubilato, R.; Vayugundla, M.; Smisek, M.; Dömel, A.; Steidle, F.; et al. German Aerospace Center’s advanced robotic technology for future lunar scientific missions: DLR’s Advanced Robotic Technology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20190574. [Google Scholar] [CrossRef]
- Sheppard, R.Y.; Thorpe, M.T.; Fraeman, A.A.; Fox, V.K.; Milliken, R.E. Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and In-Situ Observations. Minerals 2021, 11, 986. [Google Scholar] [CrossRef]
- Mallapaty, S. China has landed its first rover on Mars—Here is what happens next. Nature 2021, 593, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Muirhead, B.; Nicholas, A.; Umland, J.; Sutherland, O.; Vijendran, S. Mars Sample Return Campaign Concept Status. Acta Astronaut. 2020, 176, 131–138. [Google Scholar] [CrossRef]
- Witte, L.; Heffels, A.; Killian, M.; Knapmeyer, M.; Lange, C.; Toth, N.; Tsakyridis, G.; Wedler, A. A robotically deployable lunar surface science station and its validation in a Moon-analogue environment. Planet. Space Sci. 2020, 193, 105080. [Google Scholar] [CrossRef]
- Tsuda, Y.; Saiki, T.; Terui, F.; Nakazawa, S.; Yoshikawa, M.; Watanabe, S.I.; Team, H.P. Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu. Acta Astronaut. 2020, 171, 42–54. [Google Scholar] [CrossRef]
- Schuster, M.; Brunner, S.; Bussmann, K.; Büttner, S.; Dömel, A.; Hellerer, M.; Lehner, H.; Lehner, P.; Porges, O.; Reill, J.; et al. Towards Autonomous Planetary Exploration: The Lightweight Rover Unit (LRU), its Success in the SpaceBotCamp Challenge, and Beyond. J. Intell. Robot. Syst. Theory Appl. 2019, 93, 461–494. [Google Scholar] [CrossRef]
- Vulpi, F.; Milella, A.; Cordes, F.; Domínguez, R.; Reina, G. Deep Terrain Estimation for Planetary Rovers. In Proceedings of the 15th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS-2020, Pasadena, CA, USA, 18–21 October 2020. [Google Scholar]
- Bai, C.; Guo, J.; Guo, L.; Song, J. Deep Multi-Layer Perception Based Terrain Classification for Planetary Exploration Rovers. Sensors 2019, 19, 3102. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, D.; Van Winnendael, M.; Yoshida, K. High-speed mobility on planetary surfaces: A technical review. J. Field Robot. 2019, 36, 1436–1455. [Google Scholar] [CrossRef]
- Schuster, M.J.; Brand, C.; Brunner, S.G.; Lehner, P.; Reill, J.; Riedel, S.; Bodenmüller, T.; Bussmann, K.; Büttner, S.; Dömel, A.; et al. The LRU Rover for Autonomous Planetary Exploration and Its Success in the SpaceBotCamp Challenge. In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Braganca, Portugal, 4–6 May 2016; pp. 7–14. [Google Scholar] [CrossRef]
- Reina, G.; Foglia, M. On the Mobility of All-Terrain Rovers. Ind. Robot. Int. J. 2013, 40, 5. [Google Scholar] [CrossRef]
- Reina, G. Cross-Coupled Control for All-Terrain Rovers. Sensors 2013, 13, 785–800. [Google Scholar] [CrossRef]
- Seriani, S.; Scalera, L.; Gasparetto, A.; Gallina, P. Preloaded Structures for Space Exploration Vehicles. In Mechanism Design for Robotics: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics, Udine, Italy, 11–13 September 2018; Gasparetto, A., Ceccarelli, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–137. [Google Scholar]
- Seriani, S.; Gallina, P.; Wedler, A. Dynamics of a tethered rover on rough terrain. Mech. Mach. Sci. 2017, 47, 355–361. [Google Scholar] [CrossRef]
- Toupet, O.; Biesiadecki, J.; Rankin, A.; Steffy, A.; Meirion-Griffith, G.; Levine, D.; Schadegg, M.; Maimone, M. Terrain-adaptive wheel speed control on the Curiosity Mars rover: Algorithm and flight results. J. Field Robot. 2020, 37, 699–728. [Google Scholar] [CrossRef]
- Caruso, M.; Bregant, L.; Gallina, P.; Seriani, S. Design and multi-body dynamic analysis of the Archimede space exploration rover. Acta Astronaut. 2022, 194, 229–241. [Google Scholar] [CrossRef]
- Lindemann, R. Dynamic modeling and simulation of planetary rovers. In Proceedings of the Aerospace Design Conference, Irvine, CA, USA, 3–6 February 1992; AIAA: Reston, VA, USA, 1992. [Google Scholar] [CrossRef]
- Benamar, F.; Grand, C. Quasi-Static Motion Simulation and Slip Prediction of Articulated Planetary Rovers Using a Kinematic Approach. J. Mech. Robot. 2013, 5, 021002. [Google Scholar] [CrossRef]
- Bekker, M. Introduction to Terrain-Vehicle Systems; University of Michigan Press: Ann Arbor, MI, USA, 1969. [Google Scholar]
- Wong, J. Theory of Ground Vehicles; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ding, L.; Deng, Z.; Gao, H.; Nagatani, K.; Yoshida, K. Planetary rovers’ wheel–soil interaction mechanics: New challenges and applications for wheeled mobile robots. Intell. Serv. Robot. 2011, 4, 17–38. [Google Scholar] [CrossRef]
- Yang, Y.C.; Bao, J.S.; Jin, Y.; Cheng, Y.I. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies. Int. J. Adv. Robot. Syst. 2008, 5, 16. [Google Scholar] [CrossRef]
- Yoshida, K.; Hamano, H. Motion Dynamics of a Rover with Slip-Based Traction Model. In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; pp. 3155–3160. [Google Scholar]
- Ishigami, G.; Miwa, A.; Nagatani, K.; Yoshida, K. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot. 2007, 24, 233–250. [Google Scholar] [CrossRef]
- Schäfer, B.; Gibbesch, A.; Krenn, R.; Rebele, B. Planetary rover mobility simulation on soft and uneven terrain. Veh. Syst. Dyn. 2010, 48, 149–169. [Google Scholar] [CrossRef]
- Gibbesch, A.; Schäfer, B. Multibody System Modelling and Simulation of Plenetary Rover Mobility on Soft Terrain. In Proceedings of the ISAIRAS 2005 Conference, Munich, Germany, 5–8 September 2005. [Google Scholar]
- Gallina, A.; Gibbesch, A.; Krenn, R.; Uhl, T.; Schäfer, B. Multibody Simulation of Planetary Rover Mobility in Condition of Uncertain soft Terrain. Procedia IUTAM 2015, 13, 118–126. [Google Scholar] [CrossRef]
- Krenn, R.; Hirzinger, G. Simulation of Rover Locomotion on Sandy Terrain—Modeling Verification and Validation. In Proceedings of the 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation-ASTRA 2008, Noordwijk, The Netherlands, 11–13 November 2008. [Google Scholar]
- Chen, F.; Genta, G. Dynamic modeling of wheeled planetary rovers: A model based on the pseudo-coordiates approach. Acta Astronaut. 2012, 81, 288–305. [Google Scholar] [CrossRef]
- Fu, Q.; Krovi, V. Articulated Wheeled Robots: Exploiting Reconfigurability and Redundancy. In Proceedings of the ASME 2008 Dynamic Systems and Control Conference, Parts A and B, Ann Arbor, MI, USA, 20–22 October 2008; pp. 653–660. [Google Scholar] [CrossRef]
- Sutoh, M. Traveling performance analysis of planetary rovers using a repeatable test system in vacuum. J. Terramech. 2021, 95, 15–24. [Google Scholar] [CrossRef]
- Yoshida, K.; Hamano, H.; Watanabe, T. Slip-based Traction Control of a Planetary Rover. In Experimental Robotics VIII; Siciliano, B., Dario, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 644–653. [Google Scholar]
- Gonzalez, R.; Iagnemma, K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges. J. Field Robot. 2018, 35, 564–577. [Google Scholar] [CrossRef]
- Naiki, T.; Kubota, T. 1A2-C02 The evaluation of Planetary Rover for Rough Terrain. In JSME Annual Conference on Robotics and Mechatronics (Robomec); Japan Society of Mechanical Engineers: Tokyo, Japan, 2010. [Google Scholar] [CrossRef]
- Devi, R.; Dharrun, B.; Raj, P.G.; Gowtham, C.; Kabilan, A.S. Unmanned multipurpose all terrain rover using rocker bogie mechanism. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; pp. 1879–1882. [Google Scholar] [CrossRef]
- Kubota, T.; Naiki, T. Novel mobility system with active suspension for planetary surface exploration. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; pp. 1–9. [Google Scholar] [CrossRef]
- Inotsume, H.; Moreland, S.; Skonieczny, K.; Wettergreen, D. Parametric study and design guidelines for rigid wheels for planetary rovers. J. Terramech. 2019, 85, 39–57. [Google Scholar] [CrossRef]
- Sutoh, M.; Nagaoka, K.; Nagatani, K.; Yoshida, K. Design of wheels with grousers for planetary rovers traveling over loose soil. J. Terramech. 2013, 50, 345–353. [Google Scholar] [CrossRef]
- Haggart, S.; Waydo, J. The Mobility System Wheel Design for NASA’s Mars Science Laboratory Mission. In Proceedings of the 11th European Conference of the International Society for Terrain-Vehicle Systems, Torino, Italy, 25–28 November 2008. [Google Scholar]
- Baumgartner, E.T.; Aghazarian, H.; Trebi-Ollennu, A.; Huntsberger, T.L.; Garrett, M.S. State estimation and vehicle localization for the FIDO rover. In Sensor Fusion and Decentralized Control in Robotic Systems III; McKee, G.T., Schenker, P.S., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2000; Volume 4196, pp. 329–336. [Google Scholar] [CrossRef]
- Yenilmez, L.; Temeltas, H. Autonomous navigation for planetary exploration by a mobile robot. In Proceedings of the International Conference on Recent Advances in Space Technologies, RAST ’03, Istanbul, Turkey, 20–22 November 2003; pp. 397–402. [Google Scholar] [CrossRef]
- Adámek, R.; Brablc, M.; Vávra, P.; Dobossy, B.; Formánek, M.; Radil, F. Analytical Models for Pose Estimate Variance of Planar Fiducial Markers for Mobile Robot Localisation. Sensors 2023, 23, 5746. [Google Scholar] [CrossRef]
- Lahrech, A.; Soulhi, A. Vehicle positioning in urban environments using particle filtering-based global positioning system, odometry, and map data fusion. Int. J. Electr. Comput. Eng. 2023, 13, 3924–3938. [Google Scholar] [CrossRef]
- Gargiulo, A.M.; di Stefano, I.; Genova, A. Model-Based Slippage Estimation to Enhance Planetary Rover Localization with Wheel Odometry. Appl. Sci. 2021, 11, 5490. [Google Scholar] [CrossRef]
- Cheng, Y.; Maimone, M.; Matthies, L. Visual odometry on the Mars Exploration Rovers. In Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA, 12 October 2005; Volume 1, pp. 903–910. [Google Scholar] [CrossRef]
- Carrió, J.H.; Schwendner, J.; Kirchner, F. Planetary Rover Localization Design: Antecedents and Directions. In Proceedings of the 2012 IEEE Intelligent Vehicle Symposium, Madrid, Spain, 3–7 June 2012. [Google Scholar]
- Zhan, Y.; Zheng, Y.; Li, C.; Wang, R.; Zhu, Y.; Chen, Z. High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer. J. Field Robot. 2020, 37, 1063–1076. [Google Scholar] [CrossRef]
- Seriani, S.; Gallina, P.; Scalera, L.; Lughi, V. Development of n-DoF Preloaded Structures for Impact Mitigation in Cobots. J. Mech. Robot. 2018, 10, 051009. [Google Scholar] [CrossRef]
- Li, J.; Lou, J.; Li, Y.; Pan, S.; Xu, Y. Trajectory Tracking of Autonomous Vehicle Using Clothoid Curve. Appl. Sci. 2023, 13, 2733. [Google Scholar] [CrossRef]
- Shih, C.H.; Lin, C.J.; Jhang, J.Y. Ackerman Unmanned Mobile Vehicle Based on Heterogeneous Sensor in Navigation Control Application. Sensors 2023, 23, 4558. [Google Scholar] [CrossRef] [PubMed]
- Klančar, G.; Zdešar, A.; Blažič, S.; Škrjanc, I. Chapter 2—Motion Modeling for Mobile Robots. In Wheeled Mobile Robotics; Klančar, G., Zdešar, A., Blažič, S., Škrjanc, I., Eds.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 13–59. [Google Scholar] [CrossRef]
- Baier, W.H. Vehicle Steering Fundamentals. SAE Trans. 1961, 69, 256–268. [Google Scholar]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3. [Google Scholar]
- Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154. [Google Scholar] [CrossRef]
- Engelschion, V.; Eriksson, S.; Cowley, A.; Fateri, M.; Meurisse, A.; Kueppers, U.; Sperl, M. EAC-1A: A novel large-volume lunar regolith simulant. Sci. Rep. 2020, 10, 5473. [Google Scholar] [CrossRef] [PubMed]
Component | Value | Unit |
---|---|---|
Body mass | 1.61 | kg |
Right leg mass | 1.58 | kg |
Left leg mass | 1.58 | kg |
Wheelbase | 0.720 | m |
Track | 0.443 | m |
Height | 0.350 | m |
Wheel diameter (low grousers) | 0.170 | mm |
Wheel diameter (high grousers) | 0.186 | mm |
Wheel ID | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, M.; Giberna, M.; Görner, M.; Gallina, P.; Seriani, S. The Archimede Rover: A Comparison between Simulations and Experiments. Robotics 2023, 12, 125. https://doi.org/10.3390/robotics12050125
Caruso M, Giberna M, Görner M, Gallina P, Seriani S. The Archimede Rover: A Comparison between Simulations and Experiments. Robotics. 2023; 12(5):125. https://doi.org/10.3390/robotics12050125
Chicago/Turabian StyleCaruso, Matteo, Marco Giberna, Martin Görner, Paolo Gallina, and Stefano Seriani. 2023. "The Archimede Rover: A Comparison between Simulations and Experiments" Robotics 12, no. 5: 125. https://doi.org/10.3390/robotics12050125
APA StyleCaruso, M., Giberna, M., Görner, M., Gallina, P., & Seriani, S. (2023). The Archimede Rover: A Comparison between Simulations and Experiments. Robotics, 12(5), 125. https://doi.org/10.3390/robotics12050125