Tracking Detectors in Low-Energy Nuclear Physics: An Overview
<p>The layout of the Super-FRS GEM-TPC detector. It shows the two GEM-TPCs inside one vessel. In this configuration, the drift fields of the field cages are in opposite directions. From [<a href="#B6-qubs-08-00024" class="html-bibr">6</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 2
<p>Schematic sketch of a general multigap RPC detector. The avalanches (depicted as a blue star) induce negative signals on the (top) anode electrodes and positive signals on the (bottom) cathode electrodes.</p> "> Figure 3
<p>Schematic depiction of an SE detector coupled with a gaseous one.</p> "> Figure 4
<p>The double field cage of the ACTAR TPC demonstrator apparatus. The pad plane consists of 64 × 32 pixels, each 2 × 2 mm<sup>2</sup> wide. From [<a href="#B37-qubs-08-00024" class="html-bibr">37</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 5
<p>The mechanical design of the ToFD detector. It has an active surface area measuring 1200 × 1000 mm<sup>2</sup> and comprises four planes of scintillators. Each plane features 44 vertical scintillator bars, each measuring 27 × 1000 × 5 mm<sup>3</sup>. From [<a href="#B51-qubs-08-00024" class="html-bibr">51</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 6
<p>The scheme of the R3B Si-tracker mounted in the vacuum chamber with the target disc in the in-beam position. From [<a href="#B78-qubs-08-00024" class="html-bibr">78</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 7
<p>The AIDA detector system: The snout on the left contains several layers of the narrow 8 × 8 cm<sup>2</sup> DSSSDs, while the blue frame hosts the electronics. From [<a href="#B63-qubs-08-00024" class="html-bibr">63</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 8
<p>Left: scheme of the MUGAST detectors inside the chamber. Middle: trapezoidal DSSSD placed at backward angles. Right: MUST2 detectors placed at forward angles. From [<a href="#B98-qubs-08-00024" class="html-bibr">98</a>], reproduced under Licence CC BY-4.0.</p> "> Figure 9
<p>FAZIA detector unit: detectors, FEE, and service cards can be easily distinguished. From [<a href="#B99-qubs-08-00024" class="html-bibr">99</a>], reproduced under Licence CC BY-3.0.</p> "> Figure 10
<p>Schematic representation of STRASSE (silicon tracker: inner barrel (depicted in blue), the outer barrel (depicted in pink)) with its 150 mm thick LH target (depicted in grey) and the CATANA array (layers 2 to 7). From [<a href="#B102-qubs-08-00024" class="html-bibr">102</a>], reproduced under Licence CC BY-4.0.</p> ">
Abstract
:1. Introduction
2. Tracking Detectors
2.1. Gas-Based Detectors
2.1.1. Secondary Electron Detectors
2.1.2. Active Targets
2.2. Scintillator-Based Detectors
2.3. Semiconductor-Based Detectors
Conversion Electron Detectors
3. Conclusions
Funding
Conflicts of Interest
References
- Ottini-Hustache, S.; Mazur, C.; Auger, F.; Musumarra, A.; Alamanos, N.; Cahan, B.; Gillibert, A.; Lagoyannis, A.; Maillard, O.; Pollacco, E.; et al. CATS, a low pressure multiwire proportionnal chamber for secondary beam tracking at GANIL. Nucl. Instrum. Methods A 1999, 3, 21. [Google Scholar] [CrossRef]
- Sauli, F. GEM: A new concept for electron amplification in gas detectors. Nucl. Instrum. Methods A 1997, 386, 531. [Google Scholar] [CrossRef]
- Giomataris, Y.; Rebourgeard, P.; Robert, J.P.; Charpak, G. MICROMEGAS: A high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Method A 1996, 376, 29. [Google Scholar] [CrossRef]
- Giomataris, Y. Development and prospects of the new gaseous detector “Micromegas”. Nucl. Instrum. Method A 1998, 419, 239. [Google Scholar] [CrossRef]
- Derre, J.; Giomataris, Y. Recent experimental results with MICROMEGAS. Nucl. Instrum. Method A 2002, 477, 23. [Google Scholar] [CrossRef]
- Luoma, M.; García, F.; Äystö, J.; Blatz, T.; Chokheli, D.; Flemming, H.; Götzen, K.; Grahn, T.; Jokinen, A.; Karagiannis, C.; et al. In-beam test results of the Super-FRS GEM-TPC detector prototype with relativistic uranium ion beam. Nucl. Instrum. Method A 2023, 1052, 168262. [Google Scholar] [CrossRef]
- Geissel, H.; Weick, H.; Winkler, M.; Münzenberg, G.; Chichkine, V.; Yavor, M.; Aumann, T.; Behr, K.H.; Böhmer, M.; Brünle, A.; et al. The Super-FRS project at GSI. Nucl. Instrum. Methods B 2003, 204, 71. [Google Scholar] [CrossRef]
- Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I. Time projection chambers for tracking and identification of radioactive beams. Nucl. Instrum. Method A 1998, 419, 503. [Google Scholar]
- García, F.; Grahn, T.; Hoffman, J.; Jokinen, A.; Kaya, C.; Kunkel, J.; Rinta-Antila, S.; Risch, H.; Rusanov, I.; Schmidt, C.J.; et al. A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR. Nucl. Instrum. Method A 2018, 884, 18. [Google Scholar] [CrossRef]
- Geissel, H.; Armbruster, P.; Behr, K.; Brünle, A.; Burkard, K.; Chen, M.; Folger, H.; Franczak, B.; Keller, H.; Klepper, O.; et al. A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR. Nucl. Instrum. Methods Phys. Res. B 1992, 70, 286. [Google Scholar] [CrossRef]
- Paschalis, S.; Alkhasov, G.; Aumann, T.; Caesar, C.; Gavrilov, G.; Gernhauser, R.; Heil, M.; Holl, M.; Johansen, J.G.; Heil, A.K.; et al. The in-beam tracking detectors of the R3B experiment. Gsi Sci. Rep. 2015, 206. [Google Scholar]
- Alkhazov, G.D.; Andreev, V.A.; Golovtsov, V.L.; Ilyin, D.S.; Inglessi, A.G.; Ivanov, V.Y.; Filimonova, N.N.; Kochenda, L.M.; Kravtsov, P.A.; Krivshich, A.G.; et al. Proton Arm Spectrometer for the R3B Set-Up at Fair. Available online: https://hepd.pnpi.spb.ru/hepd/articles/methods_2018-2022/7.pdf (accessed on 15 July 2024).
- Zeballos, E.C.; Crotty, I.; Hatzifotiadou, D.; Valverde, J.L.; Neupane, S.; Williams, M.C.S.; Zichichi, A. A new type of resistive plate chamber: The multigap RPC. Nucl. Instrum. Method A 1996, 374, 132. [Google Scholar] [CrossRef]
- Xarepe, M.; Aumann, T.; Blanco, A.; Corsi, A.; Galaviz, D.; Line, H.T.J.S.; Loher, B.; Lopes, L.; Michel, J.; Panin, V.; et al. Resistive plate chambers for precise measurement of high-momentum protons in short range correlations at R3B. Nucl. Instrum. Method A 2023, 1055, 168445. [Google Scholar] [CrossRef]
- Jhingan, A.; Sugathan, P.; Golda, K.S.; Singh, R.P.; Varughese, T.; Singh, H.; Behera, B.R.; Mandal, S.K. Compact multiwire proportional counters for the detection of fission fragments. Rev. Sci. Instrum. 2009, 80, 123502. [Google Scholar] [CrossRef]
- Jhingan, A.; Sugathan, P.; Kaur, G.; Kapoor, K.; Saneesh, N.; Banerjee, T.; Singh, H.; Kumar, A.; Behera, B.R.; Nayak, B.K. Front-end electronics for CsI based charged particle array for the study of reaction dynamics. Nucl. Instrum. Methods Phys. Res. A 2015, 786, 51. [Google Scholar] [CrossRef]
- Available online: https://www.iuac.res.in/ (accessed on 15 July 2024).
- Conceptual Design Report (CDR) and Baseline Technical Report (BTR) for FAIR. Available online: https://repository.gsi.de/search?ln=en&cc=VDB&sc=1&p=Baseline+Technical+Report&f=&action_search=Search (accessed on 15 July 2024).
- Available online: https://www.ganil-spiral2.eu/scientists/ganil-spiral-2-facilities/accelerators/ (accessed on 15 July 2024).
- Williams, C.W.; Kiker, W.E.; Schmitt, H.W. Correlated Energy and Time-of-Flight Measurements of Fission Fragments with Semiconductor Detectors: System Design and Performance. Rev. Sci. Instrum. 1964, 35, 1116–1123. [Google Scholar] [CrossRef]
- Pferdekampfer, K.E.; Clerc, H.-G. Energy spectra of secondary electrons ejected by ions from foils. Z. Phys. A 1977, 280, 155. [Google Scholar] [CrossRef]
- Drouart, A.; Mazur, C.; Bourgeois, P.; Bougamont, E.; Gillbert, A.; Lapoux, V.; Nalpas, L.; Pollacco, E.C.; Riallot, M. Very large emissive foil detectors for the tracking of low-energy heavy ions. Nucl. Instrum. Methods Phys. Res. A 2007, 579, 1090. [Google Scholar] [CrossRef]
- Odland, O.H.; Mittig, W.; Lépine-Szily, A.; Fremont, G.; Chartier, M.; MacCormick, M.; Casandjian, J.M. A fast position sensitive microchannel plate detector for ray-tracing of charged particles. Nucl. Instrum. Method A 1996, 378, 149. [Google Scholar] [CrossRef]
- Pullanhiotan, S.; Rejmund, M.; Navin, A.; Mittig, W.; Bhattacharyya, S. Performance of VAMOS for reactions near the Coulomb barrier. Nucl. Instrum. Method A 2008, 593, 343. [Google Scholar] [CrossRef]
- Pancin, J.; Fernández, B.; Damoy, S.; Kebbiri, M.; Papaevangelou, T.; Riallot, M. Micromegas at low pressure for beam tracking. J. Instrum. 2012, 7, C03017. [Google Scholar] [CrossRef]
- Breskin, A.; Chechik, R.; Zwang, N. Heavy ion timing with very low pressure MWPC’s. Nucl. Instrum. Meth. 1979, 165, 125. [Google Scholar] [CrossRef]
- Voštinar, M.; Fernández, B.; Pancin, J.; Alvarez, M.A.G.; Chaminade, T.; Damoy, S.; Doré, D.; Drouart, A.; Druillole, F.; Frémont, G.; et al. Beam tracking with micromegas & wire chambers in secondary electron detection configuration. J. Instrum. 2013, 8, C12023. [Google Scholar]
- Bittner, D.; Hackenberg, G.; Weinert, M.; Armstrong, M.; Jolie, J. Development of Microchannel Plate Detectors for ion Identification for Slowed down Beams at FAIR with Minimal Interaction with the Beam. Available online: https://www.dpg-verhandlungen.de/year/2024/conference/giessen/part/hk/session/40/contribution/3 (accessed on 15 July 2024).
- Demonchy, C.E.; Caamaño, M.; Wang, H.; Mittig, W.; Roussel-Chomaz, P.; Savajols, H.; Chartier, M.; Cortina-Gil, D.; Fomichev, A.; Frémont, G.; et al. MAYA: An active-target detector for binary reactions with exotic beams. Nucl. Instrum. Methods. Phys. Res. A 2007, 583, 341. [Google Scholar] [CrossRef]
- Miernik, K.; Dominik, W.; Janas, Z.; Pfützner, M.; Grigorenko, L.; Bingham, C.; Czyrkowski, H.; Ćwiok, M.; Darby, I.G.; Da, R.; et al. MAYA: An active-target detector for binary reactions with exotic beams. Nucl. Instrum. Method A 2007, 581, 194. [Google Scholar] [CrossRef]
- Blank, B.; Hay, L.; Huikari, J.; Leblanc, S.; List, S.; Pedroza, J.L.; Ascher, P.; Audirac, L.; Borcea, C.; Canchel, G.; et al. A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events. Nucl. Instrum. Methods. Phys. Res. A 2010, 613, 65. [Google Scholar] [CrossRef]
- Dobrovolsky, A.V.; Khanzadeev, A.V.; Korolev, G.A.; Maev, E.M.; Medvedev, V.I.; Sokolov, G.L.; Terentyev, N.K.; Terrien, Y.; Velichko, G.N.; Vorobyov, A.A.; et al. Small angle pp scattering at energies from 650 to 1000 MeV. Nucl. Phys. B 1983, 4, 1. [Google Scholar] [CrossRef]
- Giomataris, I.; Oliveira, R.D.; Andriamonje, S.; Aune, S.; Charpa, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, P.; et al. Micromegas in a bulk. Nucl. Instrum. Methods. Phys. Res. A 2006, 560, 405. [Google Scholar] [CrossRef]
- Sauli, F. The gas electron multiplier (GEM): Operating principles and applications. Nucl. Instrum. Methods. Phys. Res. A 2016, 805, 2. [Google Scholar] [CrossRef]
- Pollacco, E.C.; Grinyer, G.F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; et al. GET: A generic electronics system for TPCs and nuclear physics instrumentation. Nucl. Instrum. Methods A 2018, 887, 81. [Google Scholar] [CrossRef]
- Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G.F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J.; Rebii, A.; et al. Metal-core pad-plane development for ACTAR TPC. Nucl. Instrum. Methods A 2018, 892, 114. [Google Scholar] [CrossRef]
- Camaiani, A.; Barlini, S.; Stefanini, A.; Casini, G.; Alvarez-Pol, H.; Arokiaraj, A.; Baldesi, L.; Bolzonella, R.; Cardella, G.; Ciampi, C.; et al. Energy loss profile measurements using the ACTAR TPC demonstrator active target. Nucl. Instrum. Methods Phys. Res. Sect. B 2023, 542, 188. [Google Scholar] [CrossRef]
- Mauss, B.; Morfouace, P.; Roger, T.; Pancin, J.; Grinye, G.F.; Giovinazzo, J.; Alcindor, V.; Álvarez-Pol, H.; Arokiaraj, A.; Babo, M.; et al. Commissioning of the ACtive TARget and Time Projection Chamber (ACTAR TPC). Nucl. Inst. Methods Phys. Res. A 2019, 940, 498. [Google Scholar] [CrossRef]
- Bradt, J.; Bazin, D.; Abu-Nimeh, F.; Ahn, T.; Ayyad, Y.; Novo, S.B.; Carpenter, L.; Cortesi, M.; Kuchera, M.P.; Lynch, W.G.; et al. Commissioning of the Active-Target Time Projection Chamber. Nucl. Instrum. Method A 2017, 875, 65. [Google Scholar] [CrossRef]
- Suzuki, D.; Ford, M.; Bazin, D.; Mittig, W.; Lynch, W.; Ahn, T.; Aune, S.; Shore, A.; Yurkon, J.; Kolata, J.J.; et al. Prototype AT-TPC: Toward a new generation active target time projection chamber for radioactive beam experiments. Nucl. Instrum. Meth. Phys. Res. A 2012, 691, 39. [Google Scholar] [CrossRef]
- Available online: https://nscl.msu.edu/ (accessed on 15 July 2024).
- Bradt, J.; Ayyad, Y.; Bazin, D.; Mittig, W.; Ahn, T.; Novo, S.B.; Brown, B.A.; Carpenter, L.; Cortes, M.; Kuchera, M.P.; et al. Study of spectroscopic factors at N = 29 using isobaric analogue resonances in inverse kinematics. Phys. Lett. B 2018, 778, 155. [Google Scholar] [CrossRef]
- Cortesi, M.; Rost, S.; Mittig, W.; Ayyad-Limonge, Y.; Bazin, D.; Yurkon, J.; Stolz, A. Multi-layer thick gas electron multiplier (M-THGEM): A new MPGD structure for high-gain operation at low-pressure. Rev. Sci. Instrum. 2017, 88, 013303. [Google Scholar] [CrossRef]
- Obertelli, A.; Delbart, A.; Anvar, S.; Audirac, L.; Authelet, G.; Baba, H.; Bruyneel, B.; Calvet, D.; Château, F.; Corsi, A.; et al. MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 2014, 50, 8. [Google Scholar] [CrossRef]
- Louchart, C.; Gheller, J.M.; Chesny, P.; Authelet, G.; Rousse, J.Y.; Obertelli, A.; Boutachkov, P.; Pietri, S.; Ameil, F.; Audirac, L.; et al. The PRESPEC liquid-hydrogen target for in-beam gamma spectroscopy of exotic nuclei at GSI. Nucl. Instrum. Meth. Res. A 2014, 736, 81. [Google Scholar] [CrossRef]
- Ballan, M.; Bottoni, S.; Caamaño, M.; Caciolli, A.; Campostrini, M.; Cicerchia, M.; Crespi, F.C.L.; Cristallo, S.; Dell’Aquila, D.; Depalo, R.; et al. Nuclear physics midterm plan at Legnaro National Laboratories (LNL). EPJA 2023, 138, 709. [Google Scholar]
- Bisoffi, G.; Andreev, V.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bortolato, D.; Calderolla, M.; et al. Progress in the realization and commissioning of the exotic beam facility SPES at INFN-LNL. J. Phys. Conf. Ser. 2018, 1067, 052017. [Google Scholar]
- Poleshchuk, O.; Raabe, R.; Ceruti, S.; Ceulemans, A.; Witte, H.D.; Marchi, T.; Mentana, A.; Refsgaard, J.; Yang, J. The SpecMAT active target. Nucl. Instrum. Method A 2021, 1015, 165765. [Google Scholar] [CrossRef]
- Habs, D. Radioactive Beam Experiment at ISOLDE: Coulomb Exitation and Neutron Transfer Reactions of Exotic Nuclei, Proposal to the ISOLDE Committee, CERN-ISC94-25 ISC/P68. Available online: https://cds.cern.ch/record/294864/files/SC00000198.pdf (accessed on 15 July 2024).
- Fox, S.P.; Amaudruz, P.A.; Bruskiewich, P.; Buchmann, L.; Chipps, K.A.; Hager, U.; Laird, A.M.; Martin, L.; Ruprecht, G.; Shotter, A.C.; et al. TACTIC: A new detector for nuclear astrophysics experiments. Phys. Conf. Ser. 2011, 312, 052007. [Google Scholar] [CrossRef]
- Heil, M.; Kelic-Heil, A.; Bott, L.; Almusidi, T.; Alvarez-Pol, H.; Atar, L.; Atkins, L.; Aumann, T.; Benlliure, J.; Boretzky, K.; et al. A new Time-of-flight detector for the R3B setup. Eur. Phys. J. A 2022, 58, 248. [Google Scholar] [CrossRef]
- Boretzky, K.; Gašparić, I.; Heil, M.; Mayer, J.; Heinz, A.; Caesar, C.; Kresan, D.; Simon, H.; Törnqvist, H.; Körper, D.; et al. NeuLAND: The high-resolution neutron time-of-flight spectrometer for R3B at FAIR. Nucl. Instrum. Methods Phys. Res. A 2021, 1014, 165701. [Google Scholar] [CrossRef]
- Technical Report for the Design, Construction and Commissioning of the HISPEC/DESPEC Beam Line, Infrastructure and Tracking Detectors. Available online: https://edms.cern.ch/ui/file/2381481/1/TDR_HISPEC_DESPEC_Infrastructure_public.pdf (accessed on 15 July 2024).
- Available online: http://www.fair-nustar.de/en/experiments/hispec-eng.html (accessed on 15 July 2024).
- Ameil, F.; Danchev, M.; Boutachkov, P.; Kurcewicz, J.; Pietri, S.; Ralet, D.; Gerl, J.; Pietralla, N. Time of flight with a segmented plastic finger detector at high particle rate. GSI Sci. Rep. 2012, 171. Available online: https://repository.gsi.de/record/53520/files/GSI-Report-2012-1.pdf (accessed on 15 July 2024).
- Cortes, M.L.; Schaffner, H.; Kojouharov, I.; Voss, B.; Ameil, F.; Koch, K.; Pietri, S.; Gerl, J.; Pietralla, N.; Bednarczyk, P.; et al. Development and test of a segmented Time-of-Flight plastic detector. GSI Sci. Rep. 2014, 117. Available online: https://repository.gsi.de/record/67836/files/NUSTAR-GS-03.pdf (accessed on 15 July 2024).
- Vesić, J.; Saha, S.; Górska, M.; Boutachkov, P.; Benzoni, G.; Gerl, J.; Weick, H.; Winfield, J.; Pietri, S.; Nociforo, C.; et al. Simulations of rare-isotope beams for the HISPEC/DESPEC experiments at the Super-FRS. Nucl. Instrum. Methods Phys. Res. A 2023, 1047, 167714. [Google Scholar] [CrossRef]
- Sekiya, R.; Drozd, V.; Tanaka, Y.; Itahashi, K.; Fujioka, H.; Matsumoto, S.; Saito, T.; Suzuki, K. Time resolution and high-counting rate performance of plastic scintillation counter with multiple MPPC readout. Nucl. Instrum. Methods Phys. Res. A 2022, 1034, 166745. [Google Scholar] [CrossRef]
- Kataoka, J.; Kishimoto, A.; Fujita, T.; Nishiyama, T.; Kurei, Y.; Tsujikawa, T.; Oshima, T.; Taya, T.; Iwamoto, Y.; Ogata, H.; et al. Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging. Nucl. Instrum. Methods Phys. Res. A 2015, 784, 248. [Google Scholar] [CrossRef]
- Reinhardt, T.P.; Gohl, S.; Reinicke, S.; Bemmerer, D.; Cowan, T.E.; Heidel, K.; Röder, M.; Stach, D.; Wagner, A.; Weinberger, D.; et al. Silicon photomultiplier readout of a monolithic 270×5×5 cm3 plastic scintillator bar for time of flight applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 816, 16. [Google Scholar] [CrossRef]
- Cattaneo, P.W.; Gerone, M.D.; Gatti, F.; Nishimura, M.; Ootani, W.; Rossella, M.; Shirabe, S.; Uchiyama, Y. Time resolution of time-of-flight detector based on multiple scintillation counters readout by SiPMs. Nucl. Instrum. Method A 2016, 828, 191. [Google Scholar] [CrossRef]
- Cortés, M.; Reese, M.; Doublet, S.; Saha, S.; Schaffner, H.; Ameil, F.; Bednarczyk, P.; Gerl, J.; Gorska, M.; Pietralla, N.; et al. Silicon photomultipliers as readout for a segmented Time-of-Flight plastic detector. Nucl. Instrum. Methods Phys. Res. A 2018, 899, 101. [Google Scholar] [CrossRef]
- Mistry, A.; Albers, H.; Arıcı, T.; Banerjee, A.; Benzoni, G.; Cederwall, B.; Gerl, J.; Górska, M.; Hall, O.; Hubbard, N.; et al. The DESPEC setup for GSI and FAIR. Nucl. Instrum. Method A 2022, 1033, 166662. [Google Scholar] [CrossRef]
- Available online: https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf (accessed on 15 July 2024).
- Liu, E.; Drozd, V.; Ekawa, H.; Escrig, S.; Gao, Y.; He, Y.; Kasagi, A.; Nakagawa, M.; Ong, H.; Rappold, C.; et al. A compact start time counter using plastic scintillators readout with MPPC arrays for the WASA-FRS HypHI experiment. Nucl. Instrum. Method A 2024, 1064, 169384. [Google Scholar] [CrossRef]
- Saito, T.; Achenbach, P.; Alfaki, H.A.; Amjad, F.; Armstrong, M.; Behr, K.-H.; Benlliure, J.; Brencic, Z.; Dickel, T.; Drozd, V.; et al. The WASA-FRS project at GSI and its perspective. Nucl. Instrum. Methods Phys. Res. B 2023, 542, 22. [Google Scholar] [CrossRef]
- Bargholtz, C.; Bashkanov, M.; Berłowski, M.; Bondar, A.; Bogoslawsky, D.; Brodowski, W.; Brudvik, J.; Calén, H.; Capellaro, F.; Chilingarov, A.; et al. The WASA detector facility at CELSIUS. Nucl. Instrum. Method A 2008, 594, 339. [Google Scholar] [CrossRef]
- Scheurer, J.N.; Aiche, M.; Aleonard, M.M.; Barreau, G.; Bourgine, F.; Boivin, D.; Cabaussel, D.; Chemin, J.F.; Doan, T.P.; Goudour, J.P.; et al. Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example. Nucl. Instrum. Methods Phys. Res. A 1997, 385, 501. [Google Scholar] [CrossRef]
- Gál, J.; Hegyesi, G.; Molnár, J.; Nyakó, B.M.; Kalinka, G.; Scheurer, J.N.; Aléonard, M.M.; Chemi, J.F.; Pedroza, J.L.; Juhász, K.; et al. The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. Res. A 2004, 516, 502. [Google Scholar] [CrossRef]
- Korten, W.; Atac, A.; Beamel, D.; Bednarczyk, P.; Bentley, M.A.; Benzoni, G.; Boston, A.; Bracco, A.; Cederkäll, J.; Cederwall, B.; et al. Physics opportunities with the Advanced Gamma Tracking Array: AGATA. Eur. Phys. J. A 2020, 56, 137. [Google Scholar] [CrossRef]
- Mierzejewski, J.; Srebrny, J.; Mierzejewski, H.; Andrzejewski, J.; Czarnacki, W.; Droste, C.; Grodner, E.; Jakubowski, A.; Kisieliński, M.; Komorowska, M.; et al. EAGLE—the central European Array for Gamma Levels Evaluation at the Heavy Ion Laboratory of the University of Warsaw. Nucl. Instrum. Method A 2011, 659, 84. [Google Scholar] [CrossRef]
- Valiente-Dobón, J.J.; Jaworski, G.; Goasduff, A.; Egea, F.J.; Modamio, V.; Hüyük, T.; Triossi, A.; Jastrząb, M.; Söderström, P.A.; Nitto, A.D.; et al. NEDA—NEutron Detector Array. Nucl. Instrum. Method A 2019, 927, 81. [Google Scholar] [CrossRef]
- Kuti, I.; Molnár, J.; Jaworski, G.; Palacz, M.; Goasduff, A.; Abraham, T.; Antczak, M.; Ciemała, M.; Colucc, G.; Fijałkowsk, A.; et al. Diaman—On Board with Needle. Acta Phys. Pol. B Proc. Suppl. 2024, 17, 3. [Google Scholar] [CrossRef]
- Available online: https://cyclotron.tamu.edu/sjygroup/dapper/ (accessed on 15 July 2024).
- Schrock, P.; Aumann, T.; Scheit, H.; Simon, H. Development of a Thin Large-Area Fiber Detector for Radioactive-Beam Experiment. GSI Rep. 2013. Available online: https://repository.gsi.de/record/52102 (accessed on 15 July 2024).
- Czogalik, M.; Nociforo, C.; Alfonsi, M.; Caesar, C.; Tarquino, J.A.G.; Heggen, H.; Heil, M.; Kurz, N.; Minami, S.; Savran, D.; et al. Plastic scintillator fiber detectors for heavy ion trajectory reconstruction for the Super-FRS at FAIR. J. Instrum. 2024, 19, C06008. [Google Scholar] [CrossRef]
- Gerl, J.; (GSI, Darmstadt, Germany); Vencelj, M.; (JSI, Ljubljana, Slovenia). Private communication, 2024.
- Borri, M.; Lemmon, R.; Thornhill, J.; Bate, R.; Chartier, M.; Clague, N.; Herzberg, R.D.; Labiche, M.; Lindsay, S.; Nolan, P.; et al. Detector production for the R3B Si-tracker. Nucl. Instrum. Method A 2016, 836, 105–112. [Google Scholar] [CrossRef]
- Available online: https://web-docs.gsi.de/~kwimmer/ (accessed on 15 July 2024).
- Hall, O.; Davinson, T.; Griffin, C.J.; Woods, P.J.; Appleton, C.; Bruno, C.G.; Estrade, A.; Kahl, D.; Sexton, L.; Burrows, I.; et al. The Advanced Implantation Detector Array (AIDA). Nucl. Instrum. Method A 2023, 1050, 168166. [Google Scholar] [CrossRef]
- Braga, D.; Coleman-Smith, P.; Davinson, T.; Lazarus, I.H.; Page, R.; Thomas, S. AIDA: A 16-channel amplifier ASIC to read out the Advanced Implantation Detector Array for experiments in nuclear decay spectroscopy. In Proceedings of the 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, Ghent, Belgium, 6–9 June 2011; pp. 1–5. [Google Scholar]
- Schirru, F.; Nociforo, C.; Kiš, M.; Ciobanu, M.; Frühauf, J.; Kratz, A.; Kurz, N.; Szczepanczyk, B.; Träger, M.; Visinka, R.J. Development of large area diamond detectors for time-of-flight measurements of relativistic heavy ions for the super-FRS. Phys. D Appl. Phys. 2016, 49, 215105. [Google Scholar] [CrossRef]
- Kostyleva, D.; Kiselev, O.; Bezbakh, A.; Chudoba, V.; Eremin, V.; Fomichev, A.; Gorshkov, A.; Krupko, S.; Mukha, I.; Muzalevskii, I. Study of the silicon detectors for time-of-flight measurements at the Super-FRS facility and EXPERT experiments at FAIR. Acta Phys. Pol. 2018, 3, 49. [Google Scholar] [CrossRef]
- Kalantar-Nayestanaki, N.; Scheidenberger, C. Experiments at the Interface of Nuclear, Atomic, and Hadron Physics with FRS at GSI and Super-FRS at FAIR. Nucl. Phys. News 2024, 34, 21–26. [Google Scholar] [CrossRef]
- Äystö, J.; Behr, K.-H.; Benlliure, J.; Bracco, A.; Egelhof, P.; Fomichev, A.; Gales, S.; Geissel, H.; Grahn, T.; Grigorenko, L.V.; et al. Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation. Nucl. Instrum. Method B 2016, 376, 111. [Google Scholar] [CrossRef]
- Stefanescu, A.I.; Panin, V.; Trache, L.; Motobayashi, T.; Otsu, H.; Saastamoinen, A.; Uesaka, T.; Stuhl, L.; Tanaka, J.; Tudor, T.; et al. Silicon tracker array for RIB experiments at SAMURAI. Eur. Phys. J. A 2022, 58, 223. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; et al. SAMURAI spectrometer for RI beam experiments. Nucl. Instrum. Method B 2013, 17, 294. [Google Scholar] [CrossRef]
- Ohsugi, T.; Yoshida, S.; Fukazawa, Y.; Yamamura, K.; Sato, K.; Yamamoto, K.; Sadrozinski, H.F.-W. Design and properties of the GLAST flight silicon micro-strip sensors. Nucl. Instrum. Method A 2005, 541, 29. [Google Scholar] [CrossRef]
- Koshchiy, E.; Blackmon, J.C.; Rogachev, G.V.; Wiedenhöver, I.; Baby, L.; Barber, P.; Bardayan, D.W.; Belarge, J.; Caussyn, D.; Johnson, E.D.; et al. ANASEN: The array for nuclear astrophysics and structure with exotic nuclei. Nucl. Instrum. Method A 2017, 870, 1. [Google Scholar] [CrossRef]
- Beaumel, D.; GASPARD collaboration. The GASPARD project. Nucl. Instrum. Method B 2013, 317, 661–663. [Google Scholar] [CrossRef]
- Michimasa, S.; Hwang, J.; Yamada, K.; Ota, S.; Dozono, M.; Imai, N.; Yoshida, K.; Yanagisawa, Y.; Kusaka, K.; Ohtake, M.; et al. OEDO, the energy-degrading beamline at RI Beam Factory. Prog. Theor. Exp. Phys. 2019, 4, 043D01. [Google Scholar] [CrossRef]
- Mauss, B.; Hwang, J.; Suzuki, D.; Fukushima, H.; Imai, N.; Ong, H.J.; Kitamura, N.; Michimasa, S.; Wimmer, K.; Yamaguchi, H. Available online: https://www.jstage.jst.go.jp/article/jpsgaiyo/74.2/0/74.2_285/_pdf (accessed on 15 July 2024).
- Dueñas, J.A.; Cobo, A.; López, L.; Galtarossa, F.; Goasduff, A.; Mengoni, D.; Sánchez-Benítez, A.M. Test Bench for Highly Segmented GRIT Double-Sided Silicon Strip Detectors: A Detector Quality Control Protocol. Sensors 2023, 23, 5384. [Google Scholar] [CrossRef]
- Camara, F.S.; Maj, A. PARIS White Book; The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences: Krakow, Poland, 2021; ISBN 978-83-63542-22-1. [Google Scholar]
- Dormar, J.-J.; Assié, M.; Grassi, L.; Rauly, E.; Beaumel, D.; Brulin, G.; Chabot, M.; Coacolo, J.-L.; Flavigny, F.; Genolini, B.; et al. Pulse shape discrimination for GRIT: Beam test of a new integrated charge and current preamplifier coupled with high granularity Silicon detectors. Nucl. Inst. Methods Phys. Res. A 2021, 1013, 16564. [Google Scholar]
- Assié, M.; Clément, E.; Lemasson, A.; Ramos, D.; Raggio, A.; Zanon, I.; Galtarossa, F.; Lenain, C.; Casal, J.; Flavigny, F.; et al. The MUGAST-AGATA-VAMOS campaign: Set-up and performances. Nucl. Instrum. Method A 2021, 1014, 165743. [Google Scholar] [CrossRef]
- Pollacco, E.; Beaumel, D.; Roussel-Chomaz, P.; Atkin, E.; Baron, P.; Baronick, J.P.; Becheva, E.; Blumenfeld, Y.; Boujrad, A.; Drouart, A.; et al. MUST2: A new generation array for direct reaction studies. Eur. Phys. J. A 2005, 25, 287–288. [Google Scholar] [CrossRef]
- Girard-Alcindor, V.; Jacob, H.; Assie, M.; Beaumel, D.; Blumenfeld, Y. Overview and performance of the 2023 MUGAST@LISE campaign at GANIL. Il Nuovo C. 2024, 47C, 59. [Google Scholar]
- Barlini, S.; Bini, M.; Buccola, A.; Camaiani, A.; Casini, G.; Ciampi, C.; Frosin, C.; Ottanelli, P.; Pasquali, G.; Piantelli, S.; et al. FAZIA: A new performing detector for charged particles. J. Phys. Conf. Ser. 2020, 1561, 012003. [Google Scholar] [CrossRef]
- Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, L.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; et al. Fragmentation studies with the CHIMERA detector at LNS in Catania: Recent progress. Nucl. Phys. A 2004, 734, 504–511. [Google Scholar]
- Pagano, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; Dell’aquila, D.; De Filippo, E.; De Luca, S.; et al. Status and perspective of FARCOS: A new correlator array for nuclear reaction studies. EPJ Web Conf. 2016, 117, 10008. [Google Scholar] [CrossRef]
- Liu, H.N.; Flavigny, F.; Baba, H.; Boehmer, M.; Bonnes, U.; Borshchov, V.; Doornenbal, P.; Ebina, N.; Enciu, M.; Frotscher, A.; et al. STRASSE: A silicon tracker for quasi-free scattering measurements at the RIBF. Eur. Phys. J. A 2023, 59, 121. [Google Scholar] [CrossRef]
- Togano, Y.; Nakamura, T.; Kondo, Y.; Shikata, M.; Ozaki, T.; Saito, A.T.; Tomai, T.; Yasuda, M.; Yamada, H.; Chiga, N.; et al. New γ-ray detector CATANA for in-beam γ-ray spectroscopy with fast RI beams. Nucl. Instrum. Method B 2020, 463, 195. [Google Scholar] [CrossRef]
- Available online: https://home.cern/science/experiments/isolde (accessed on 15 July 2024).
- Bildstein, V.; Gernhäuser, R.; Kröll, T.; Krücken, R.; Wimmer, K.; Duppen, P.V.; Wimmer, K.; Duppen, P.V.; Huyse, M.; Patronis, N.; et al. T-REX A new setup for transfer experiments at REX-ISOLDE. Eur. Phys. J. A 2012, 48, 85. [Google Scholar] [CrossRef]
- Warr, N.; Van De Walle, J.; Albers, M.; Ames, F.; Bastin, B.; Bauer, C.; Bildstein, V.; Blazhev, A.; Bönig, S.; Bree, N.; et al. The Miniball spectrometer. Eur. Phys. J. A 2013, 49, 40. [Google Scholar] [CrossRef]
- Available online: https://hie-isolde-project.web.cern.ch/hie-isolde-project/ (accessed on 15 July 2024).
- Berner, C.; Wernera, L.; Gernhäusera, R.; Kröll, T. HI-TREX—A highly integrated transfer setup at REX-(HIE)ISOLDE. Nucl. Instrum. Method A 2021, 987, 164827. [Google Scholar] [CrossRef]
- Scheck, M.; Gaffney, L.P.; Butler, P.A.; Bree, N.; Carrol, R.J.; Cox, D.; Grahn, T.; Greenlees, P.; Hauschild, K.; Herzan, A.; et al. Combined in-beam electron and γ -ray spectroscopy of 184,186Hg. Phys. Rev. C 2011, 83, 037303. [Google Scholar] [CrossRef]
- Metlay, M.; Saladin, J.; Lee, I.; Dietzsch, O. The ICEBall: A multiple element array for in-beam internal conversion electron spectroscopy. Nucl. Instrum. Methods Phys. Res. A 1993, 336, 162. [Google Scholar] [CrossRef]
- Lee, K.; Dulal, C.; Tan, W.; Gyurjinyan, A.; Sauer, E.; Lesher, S.; Aprahamian, A. Transformation of ICEBall to fIREBall for conversion electron spectroscopy. Nucl. Inst. Methods Phys. Res. A 2023, 1052, 168288. [Google Scholar] [CrossRef]
- Papadakis, P.; Cox, D.M.; O’Neill, G.G.; Borge, M.J.G.; Butler, P.A.; Gaffney, L.P.; Greenlees, P.T.; Herzberg, R.D.; Illana, A.; Joss, D.T.; et al. The SPEDE spectrometer. Eur. Phys. J. A 2018, 54, 42. [Google Scholar] [CrossRef]
- Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P.T.; Butler, P.A.; Coleman-Smith, P.J.; Cox, D.M.; Cresswell, J.R.; Jones, P.; et al. The SAGE spectrometer. Eur. Phys. J. A 2014, 50, 53. [Google Scholar] [CrossRef]
- Leino, M.; Äystö, J.; Enqvist, T.; Heikkinen, P.; Jokinen, A.; Nurmia, M.; Ostrowski, A.; Trzaska, W.H.; Uusitalo, J.; Eskola, K.; et al. Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Method B 1995, 99, 653. [Google Scholar] [CrossRef]
- Page, R.D.; Andreyev, A.N.; Appelbe, D.E.; Butler, P.A.; Freeman, S.J.; Greenlees, P.T.; Herzberg, R.-D.; Jenkins, D.G.; Jones, G.D.; Jones, P.; et al. The GREAT spectrometer. Nucl. Instrum. Method B 2003, 204, 634. [Google Scholar] [CrossRef]
- Heikkinen, P.; Liukkonen, E. Cyclotrons and Their Applications. In Proceedings of the 14th International Conference, Cape Town, South Africa, 8–13 October 1995; Cornell, J.C., Ed.; World Scientific: Singapore, 1996. [Google Scholar]
- Moukaddam, M.; Smallcombe, J.; Evitts, L.J.; Garnsworthy, A.B.; Andreoiu, C.; Ball, G.C.; Berean-Dutcher, J.; Bishop, D.; Bolton, C.; Caballero-Folch, R.; et al. In-beam internal conversion electron spectroscopy with the SPICE detector. Nucl. Instrum. Method A 2018, 905, 180. [Google Scholar] [CrossRef]
- Hackman, G. Facilities and Methods: High-Resolution Gamma-Ray Spectroscopy at TRIUMF-ISAC. Nucl. Phys. New 2005, 15, 21. [Google Scholar] [CrossRef]
- Laxdal, R.E. Comissioning and Early Experiments with ISAC-II. In Proceedings of the PAC07, Albequerque, NM, USA, 25–29 June 2007; p. 2593. [Google Scholar]
- Marchini, N.; Nannini, A.; Ottanelli, M.; Saltarelli, A.; Rocchini, M.; Benzoni, G.; Gamba, E.R.; Goasduff, A.; Gottardo, A.; Krings, T.; et al. SLICES: Spes Low-energy Internal Conversion Electron Spectrometer. Nucl. Instrum. Method A 2021, 1020, 165860. [Google Scholar] [CrossRef]
- Avaa, A.A.; Jones, P.; Usman, I.T.; Chisapi, M.V.; Kibédi, T.; Zikhali, B.R.; Msebi, L. Electron spectrometer for electric monopole (E0) transition studies in nuclei. Nucl. Instrum. Method A 2020, 964, 163809. [Google Scholar] [CrossRef]
- Available online: https://tlabs.ac.za/subatomic-physics-3/infrastructure/ (accessed on 15 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesić, J. Tracking Detectors in Low-Energy Nuclear Physics: An Overview. Quantum Beam Sci. 2024, 8, 24. https://doi.org/10.3390/qubs8030024
Vesić J. Tracking Detectors in Low-Energy Nuclear Physics: An Overview. Quantum Beam Science. 2024; 8(3):24. https://doi.org/10.3390/qubs8030024
Chicago/Turabian StyleVesić, Jelena. 2024. "Tracking Detectors in Low-Energy Nuclear Physics: An Overview" Quantum Beam Science 8, no. 3: 24. https://doi.org/10.3390/qubs8030024
APA StyleVesić, J. (2024). Tracking Detectors in Low-Energy Nuclear Physics: An Overview. Quantum Beam Science, 8(3), 24. https://doi.org/10.3390/qubs8030024