Performance Evaluation of CoAP and MQTT_SN in an IoT Environment †
<p>Client/Server model protocol in a Constrained Application Protocol (CoAP) environment.</p> "> Figure 2
<p>Messages types exchanged in CoAP: (<b>a</b>) Confirmable Messages; (<b>b</b>) Non-Confirmable Messages.</p> "> Figure 3
<p>Publish/Subscribe pattern followed by the Message Queue Telemetry Transport (MQTT) protocol.</p> "> Figure 4
<p>Messages exchanged by MQTT protocol.</p> "> Figure 5
<p>Publish/Subscribe pattern followed by the MQTT for sensor networks (MQTT_SN) protocol including the gateway functionality.</p> "> Figure 6
<p>Messages Exchanged by MQTT_SN protocol.</p> "> Figure 7
<p>CoAP exchanged messages during the simulation.</p> "> Figure 8
<p>MQTT_SN exchanged messages during the simulation.</p> "> Figure 9
<p>Energy Consumption comparison between CoAP and MQTT_SN.</p> ">
Abstract
:1. Introduction
2. IoT Application Layer Protocols
2.1. Constrained Application Protocol (CoAP)
- Confirmable (CON): CON messages require an acknowledgement (ACK), and the response could be sent in the same ACK message (synchronously) or in a separate message if more computational time is needed (asynchronously).
- Non-Confirmable (NON): a NON message does not need an ACK.
- Acknowledgement (ACK): sent in response to CON messages, to confirm their reception.
- Reset (RST): sent as a response of a message that could not be processed [1].
2.2. Message Queue Telemetry Transport for Sensor Networks (MQTT_SN)
- QoS level 0 (at most once): At this QoS level, delivery is not guaranteed. It is a best-effort delivery service level. The receiver does not acknowledge receipt of the message, and the message is not stored and re-transmitted by the sender. This QoS level is also known as “fire and forget” and is the simplest one, therefore, it has the lowest overheads [14].
- QoS level 1 (at least once): The sender stores and retransmits the message until it receives the acknowledgement from the receiver. This QoS level guarantees messages arrival, but duplicates can occur [14].
- QoS level 2 (exactly once): Where messages are assured to arrive exactly once. This level could be used, for instance, with billing systems where duplicate or lost messages cannot be afforded [14].
3. Related Works
4. Simulation Tools and Scenarios
4.1. Test Bed
4.2. Energy Consumption
5. Experimental Results
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A Survey on Application Layer Protocols for the Internet of Things. Trans. IoT Cloud Comput. 2015, 3, 11–17. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Iova, O.; Picco, P.; Istomin, T.; Kiraly, C. RPL, the Routing Standard for the Internet of Things … Or Is It? IEEE Commun. Mag. 2016, 54, 16–22. [Google Scholar] [CrossRef]
- Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Molisch, A.F.; Balakrishnan, K.; Chong, C.C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H.; Schuster, U.; Siwiak, K. IEEE 802.15. 4a channel model-final report. IEEE P802 2004, 15, 1–36. [Google Scholar]
- Ghosh, A.; Ratasuk, R.; Mondal, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: Next-generation wireless broadband technology [Invited Paper]. IEEE Wirel. Commun. 2010, 17, 10–22. [Google Scholar] [CrossRef]
- Kürschner, C.; Condea, C.; Kasten, O.; Thiesse, F. Discovery Service Design in the EPCglobal Network. Internet Things 2008, 4952, 19–34. [Google Scholar]
- Gomez, C.; Paradells, J. Wireless home automation networks: A survey of architectures and technologies. IEEE Commun. Mag. 2010, 48, 92–101. [Google Scholar] [CrossRef]
- Shelby, Z.; Bormann, C.; Hartke, K. RFC7252: The Constrained Application Protocol (CoAP). Available online: https://tools.ietf.org/html/rfc7252 (accessed on 1 March 2019).
- Castellani, A.P.; Gheda, M.; Bui, N.; Rossi, M.; Zorzi, M. Web Services for the Internet of Things through CoAP and EXI. In Proceedings of the IEEE International Conference on Communications Workshops (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6. [Google Scholar]
- Mq Telemetry Transport. Available online: http://mqtt.org/ (accessed on 1 March 2019).
- Richardson, L.; Ruby, S. RESTful Web Services, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- MQ Telemetry Transport (MQTT) V3. 1 Protocol Specification. Available online: http://Www.Ibm.Com/Developerworks/Webservices/Library/Ws-Mqtt/Index.Html (accessed on 1 March 2019).
- Portocarrero, T.; Rueda, J.M.; Smith, J. Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora. Rev. Colomb. Comput. 2017, 18, 58–74. [Google Scholar]
- Lesjak, C.; Hein, D.; Hofmann, M.; Maritsch, M.; Aldrian, A.; Priller, P.; Ebner, T.; Ruprechter, T.; Pregartner, G. Securing smart maintenance services: Hardware-security and TLS for MQTT. In Proceedings of the IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 1243–1250. [Google Scholar]
- Cabrejas, I.F.; Vazquez, M.C.C. Performance Evaluation of Constrained Application Protocols in Wireless Sensor Networks. Master’s Thesis, University Carlos III of Madrid, Madrid, Spain, 2018. [Google Scholar]
- Stanford-Clark, A.; Troung, H.L. MQTT for Sensor Networks (MQTT-SN) Protocol Specification; Version 1.2; International Business Machines Corporation (IBM): Armonk, NY, USA, 2013. [Google Scholar]
- Bandyopadhyay, S.; Bhattacharyya, A. Lightweight Internet protocols for web enablement of sensors using constrained gateway devices. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC), San Diego, CA, USA, 28–31 January 2013; pp. 334–340. [Google Scholar] [CrossRef]
- De Caro, N.; Colitti, M.; Steenhaut, K.; Mangino, G.; Reali, G. Comparison of two lightweight protocols for smartphone-based sensing. In Proceedings of the 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Namur, Belgium, 21 November 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Levä, T.; Mazhelis, O.; Suomi, H. Comparing the cost-efficiency of CoAP and HTTP in Web of Things applications. Decis. Support Syst. 2014, 63, 23–38. [Google Scholar] [CrossRef]
- Amaran, M.H.; Noh, N.A.M.; Rohmad, M.S.; Hashim, H. A Comparison of Lightweight Communication Protocols in Robotic Applications. Procedia Comput. Sci. 2015, 76, 400–405. [Google Scholar] [CrossRef]
- Iglesias-Urkia, M.; Orive, A.; Urbieta, A. Analysis of CoAP Implementations for Industrial Internet of Things: A Survey. Procedia Comput. Sci. 2017, 109, 188–195. [Google Scholar] [CrossRef]
- Thota, P.; Kim, Y. Implementation and Comparison of M2M Protocols for Internet of Things. In Proceedings of the 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering (ACIT-CSII-BCD), Las Vegas, NV, USA, 12–14 December 2016; pp. 43–48. [Google Scholar] [CrossRef]
- Tandale, U.; Momin, B.; Seetharam, D.P. An empirical study of application layer protocols for IoT. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2447–2451. [Google Scholar] [CrossRef]
- Liri, E.; Singh, P.K.; Rabiah, A.B.; Makhijani, K.K.K.; Ramakrishnan, K.K. Robustness of IoT Application Protocols to Network Impairments. In Proceedings of the 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Washington, DC, USA, 25–27 June 2018; pp. 97–103. [Google Scholar] [CrossRef]
- Larmo, A.; Carpio, F.D.; Arvidson, P.; Chirikov, R. Comparison of CoAP and MQTT Performance over Capillary Radios. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- van der Westhuizen, H.W.; Hancke, G.P. Practical Comparison between COAP and MQTT—Sensor to Server level. In Proceedings of the 2018 Wireless Advanced (WiAd), London, UK, 26–28 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- van der Westhuizen, H.W.; Hancke, G.P. Comparison between COAP and MQTT—Server to Business System level. In Proceedings of the 2018 Wireless Advanced (WiAd), London, UK, 26–28 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Gündoğran, C.; Kietzmann, P.; Lenders, M.; Petersen, H.; Schmidt, T.C.; Wählisch, M. NDN, CoAP, and MQTT: A comparative measurement study in the IoT. In Proceedings of the 5th ACM Conference on Information-Centric Networking (ICN ‘18). ACM, New York, NY, USA, 21–23 September 2018; pp. 159–171. [Google Scholar] [CrossRef]
- Larmo, A.; Ratilainen, A.; Saarinen, J. Impact of CoAP and MQTT on NB-IoT System Performance. Sensors 2019, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Contiki: The Open Source OS for the Internet of Things. Available online: http://www.contiki-os.org/ (accessed on 1 March 2019).
- Davies, J. MSP430 Microcontroller Basics, 1st ed.; Elsevier Ltd.: Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 2008. [Google Scholar]
- Texas Instruments. MSP430x2xx Family User’s Guide; Texas Instruments: Dallas, Texas, 2013; pp. 23–27. [Google Scholar]
- Chipcon Products. CC2420: 2.4 GHz IEEE 802.15.4/ZigBee-Ready RF Transceiver; Texas Instruments: Dallas, Texas, 2019; pp. 1–85. [Google Scholar]
- ZOLERTIA™. Z1 Datasheet. v. 1.1. 2010. Available online: www.zolertia.com (accessed on 1 March 2019).
- GitHub: Contiki-os/contiki/apps/powertrace. Available online: https://github.com/contiki-os/contiki/blob/master/apps/powertrace/powertrace.c (accessed on 1 March 2019).
- Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2011. [Google Scholar]
- Oasis. Advanced Message Queuing Protocol (AMQP); Version 1.0; Adv. Open Std. Inf. Soc. (OASIS): Burlington, MA, USA, 2012. [Google Scholar]
- Data Distribution Services Specification. Available online: http://www.omg.org/spec/DDS/1.2/ (accessed on 1 March 2019).
CoAP Type of Message | Length (Bytes) |
---|---|
CoAP Non-Confirmable POST | 103 |
MQTT_SN Type of Message | Length (Bytes) |
---|---|
MQTT_SN Connect Command | 96 |
MQTT_SN Register | 88 |
MQTT_SN Subscribe Request | 81 |
MQTT_SN Ping Request | 92 |
MQTT_SN Publish Message | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martí, M.; Garcia-Rubio, C.; Campo, C. Performance Evaluation of CoAP and MQTT_SN in an IoT Environment. Proceedings 2019, 31, 49. https://doi.org/10.3390/proceedings2019031049
Martí M, Garcia-Rubio C, Campo C. Performance Evaluation of CoAP and MQTT_SN in an IoT Environment. Proceedings. 2019; 31(1):49. https://doi.org/10.3390/proceedings2019031049
Chicago/Turabian StyleMartí, Mónica, Carlos Garcia-Rubio, and Celeste Campo. 2019. "Performance Evaluation of CoAP and MQTT_SN in an IoT Environment" Proceedings 31, no. 1: 49. https://doi.org/10.3390/proceedings2019031049
APA StyleMartí, M., Garcia-Rubio, C., & Campo, C. (2019). Performance Evaluation of CoAP and MQTT_SN in an IoT Environment. Proceedings, 31(1), 49. https://doi.org/10.3390/proceedings2019031049