Incompatibility in Multi-Parameter Quantum Metrology with Fermionic Gaussian States †
Abstract
:1. Introduction
2. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef]
- Aspachs, M.; Adesso, G.; Fuentes, I. Optimal Quantum Estimation of the Unruh-Hawking Effect. Phys. Rev. Lett. 2010, 105, 151301. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Bruschi, D.E.; Fuentes, I. Quantum metrology for relativistic quantum fields. Phys. Rev. D 2014, 89, 065028. [Google Scholar] [CrossRef]
- Schnabel, R.; Mavalvala, N.; McClelland, D.E.; Lam, P.K. Quantum metrology for gravitational wave astronomy. Nat. Commun. 2010, 1, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef]
- Correa, L.A.; Mehboudi, M.; Adesso, G.; Sanpera, A. Individual Quantum Probes for Optimal Thermometry. Phys. Rev. Lett. 2015, 114, 220405. [Google Scholar] [CrossRef]
- De Pasquale, A.; Rossini, D.; Fazio, R.; Giovannetti, V. Local quantum thermal susceptibility. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Schmitt, S.; Gefen, T.; Stürner, F.M.; Unden, T.; Wolff, G.; Müller, C.; Scheuer, J.; Naydenov, B.; Markham, M.; Pezzagna, S.; Meijer, J.; Schwarz, I.; Plenio, M.; Retzker, A.; McGuinness, L.P.; Jelezko, F. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 2017, 356, 832–837. [Google Scholar] [CrossRef]
- Boss, J.M.; Cujia, K.S.; Zopes, J.; Degen, C.L. Quantum sensing with arbitrary frequency resolution. Science 2017, 356, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.; Nair, R.; Lu, X.M. Quantum Theory of Superresolution for Two Incoherent Optical Point Sources. Phys. Rev. X 2016, 6, 031033. [Google Scholar] [CrossRef]
- Nair, R.; Tsang, M. Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. Phys. Rev. Lett. 2016, 117, 190801. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.; Pirandola, S. Ultimate Precision Bound of Quantum and Subwavelength Imaging. Phys. Rev. Lett. 2016, 117, 190802. [Google Scholar] [CrossRef]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1708. [Google Scholar] [CrossRef]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of Frequency Standards with Quantum Entanglement. Phys. Rev. Lett. 1997, 79, 3865–3868. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum metrology. Phys. Rev. Lett. 2006, 96, 010401. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.G.A. Quantum Estimation For Quantum Technology. Int. J. Quantum Inf. 2009, 7, 125–137. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar] [CrossRef]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Multi-parameter quantum metrology. Adv. Phys. X 2016, 1, 621–639. [Google Scholar] [CrossRef]
- Pezzè, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef]
- Nichols, R.; Liuzzo-Scorpo, P.; Knott, P.A.; Adesso, G. Multiparameter Gaussian quantum metrology. Phys. Rev. A 2018, 98, 012114. [Google Scholar] [CrossRef]
- Braun, D.; Adesso, G.; Benatti, F.; Floreanini, R.; Marzolino, U.; Mitchell, M.W.; Pirandola, S. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 2018, 90, 035006. [Google Scholar] [CrossRef]
- Humphreys, P.C.; Barbieri, M.; Datta, A.; Walmsley, I.A. Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 2013, 111, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Baumgratz, T.; Datta, A. Quantum Enhanced Estimation of a Multidimensional Field. Phys. Rev. Lett. 2016, 116, 1–5. [Google Scholar] [CrossRef]
- Pezzè, L.; Ciampini, M.A.; Spagnolo, N.; Humphreys, P.C.; Datta, A.; Walmsley, I.A.; Barbieri, M.; Sciarrino, F.; Smerzi, A. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. Phys. Rev. Lett. 2017, 119, 1–6. [Google Scholar] [CrossRef]
- Apellaniz, I.; Urizar-Lanz, I.; Zimborás, Z.; Hyllus, P.; Tóth, G. Precision bounds for gradient magnetometry with atomic ensembles. Phys. Rev. A 2018, 97, 1–17. [Google Scholar] [CrossRef]
- Zanardi, P.; Paris, M.G.A.; Campos Venuti, L. Quantum criticality as a resource for quantum estimation. Phys. Rev. A 2008, 78, 042105. [Google Scholar] [CrossRef]
- Carollo, A.C.M.; Pachos, J.K. Geometric Phases and Criticality in Spin-Chain Systems. Phys. Rev. Lett. 2005, 95, 157203. [Google Scholar] [CrossRef]
- Zhu, S.L. Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain. Phys. Rev. Lett. 2006, 96, 077206. [Google Scholar] [CrossRef] [PubMed]
- Hamma, A. Berry Phases and Quantum Phase Transitions. 2006. Available online: http://arxiv.org/abs/quant-ph/0602091 (accessed on 15 April 2019).
- Zanardi, P.; Paunković, N. Ground state overlap and quantum phase transitions. Phys. Rev. E 2006, 74, 031123. [Google Scholar] [CrossRef] [PubMed]
- Campos Venuti, L.; Zanardi, P. Quantum Critical Scaling of the Geometric Tensors. Phys. Rev. Lett. 2007, 99, 095701. [Google Scholar] [CrossRef] [PubMed]
- Campos Venuti, L.; Cozzini, M.; Buonsante, P.; Massel, F.; Bray-Ali, N.; Zanardi, P. Fidelity approach to the Hubbard model. Phys. Rev. B 2008, 78, 1–8. [Google Scholar] [CrossRef]
- Zanardi, P.; Giorda, P.; Cozzini, M. Information-Theoretic Differential Geometry of Quantum Phase Transitions. Phys. Rev. Lett. 2007, 99, 100603. [Google Scholar] [CrossRef]
- Zanardi, P.; Campos Venuti, L.; Giorda, P. Bures metric over thermal state manifolds and quantum criticality. Phys. Rev. A 2007, 76, 062318. [Google Scholar] [CrossRef]
- Garnerone, S.; Jacobson, N.T.; Haas, S.; Zanardi, P. Fidelity Approach to the Disordered Quantum XY Model. Phys. Rev. Lett. 2009, 102, 057205. [Google Scholar] [CrossRef]
- Rezakhani, A.T.; Abasto, D.F.; Lidar, D.A.; Zanardi, P. Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions. Phys. Rev. A 2010, 82, 012321. [Google Scholar] [CrossRef]
- Magazzù, L.; Valenti, D.; Carollo, A.; Spagnolo, B. Multi-State Quantum Dissipative Dynamics in Sub-Ohmic Environment: The Strong Coupling Regime. Entropy 2015, 17, 2341–2354. [Google Scholar] [CrossRef]
- Magazzú, L.; Carollo, A.; Spagnolo, B.; Valenti, D.; Magazzù, L.; Carollo, A.; Spagnolo, B.; Valenti, D. Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime. J. Stat. Mech. Theory Exp. 2016, 2016, 54016. [Google Scholar] [CrossRef]
- Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B. Stabilization effects of dichotomous noise on the lifetime of the superconducting state in a long Josephson junction. Entropy 2015, 17, 2862–2875. [Google Scholar] [CrossRef]
- Spagnolo, B.; Valenti, D.; Guarcello, C.; Carollo, A.; Persano Adorno, D.; Spezia, S.; Pizzolato, N.; Di Paola, B. Noise-induced effects in nonlinear relaxation of condensed matter systems. Chaos, Solitons and Fractals 2015, 81, 412–424. [Google Scholar] [CrossRef]
- Spagnolo, B.; Guarcello, C.; Magazzù, L.; Carollo, A.; Persano Adorno, D.; Valenti, D. Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems. Entropy 2016, 19, 20. [Google Scholar] [CrossRef]
- Spagnolo, B.; Carollo, A.; Valenti, D. Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System. Entropy 2018, 20, 226. [Google Scholar] [CrossRef]
- Valenti, D.; Carollo, A.; Spagnolo, B. Stabilizing effect of driving and dissipation on quantum metastable states. Phys. Rev. A 2018, 97, 042109. [Google Scholar] [CrossRef]
- Spagnolo, B.; Carollo, A.; Valenti, D. Stabilization by dissipation and stochastic resonant activation in quantum metastable systems. Eur. Phys. J. Spec. Top. 2018, 227, 379–420. [Google Scholar] [CrossRef]
- Banchi, L.; Giorda, P.; Zanardi, P. Quantum information-geometry of dissipative quantum phase transitions. Phys. Rev. E 2014, 89, 022102. [Google Scholar] [CrossRef]
- Marzolino, U.; Prosen, T. Quantum metrology with nonequilibrium steady states of quantum spin chains. Phys. Rev. A 2014, 90, 062130. [Google Scholar] [CrossRef]
- Kolodrubetz, M.; Sels, D.; Mehta, P.; Polkovnikov, A. Geometry and non-adiabatic response in quantum and classical systems. Phys. Rep. 2017, 697, 1–87. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. Sci. Rep. 2018, 8, 9852. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Symmetric Logarithmic Derivative of Fermionic Gaussian States. Entropy 2018, 20, 485. [Google Scholar] [CrossRef] [PubMed]
- Marzolino, U.; Prosen, T. Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Phys. Rev. B 2017, 96, 104402. [Google Scholar] [CrossRef]
- Holevo, A. Probabilistic and Statistical Aspects of Quantum Theory; Edizioni della Normale: Pisa, Italy, 2011. [Google Scholar] [CrossRef]
- Hayashi, M.; Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 2008, 49, 102101. [Google Scholar] [CrossRef]
- Kahn, J.; Guţă, M.I. Local Asymptotic Normality for Finite Dimensional Quantum Systems. Commun. Math. Phys. 2009, 289, 597–652. [Google Scholar] [CrossRef]
- Gill, R.D.; Guţă, M.I. On asymptotic quantum statistical inference. In From Probability to Statistics and Back: High-Dimensional Models and Processes A Festschrift in Honor of Jon A. Wellner; Banerjee, M., Bunea, F., Huang, J., Koltchinskii, V., Maathuis, M.H., Eds.; Institute of Mathematical Statistics: Beachwood, OH, USA, 2013; Volume 9, pp. 105–127. [Google Scholar] [CrossRef]
- Yamagata, K.; Fujiwara, A.; Gill, R.D. Quantum local asymptotic normality based on a new quantum likelihood ratio. Ann. Stat. 2013, 41, 2197–2217. [Google Scholar] [CrossRef]
- Ragy, S.; Jarzyna, M.; Demkowicz-Dobrzański, R. Compatibility in multiparameter quantum metrology. Phys. Rev. A 2016, 94, 052108. [Google Scholar] [CrossRef]
- Leonforte, L.; Valenti, D.; Spagnolo, B.; Carollo, A. Uhlmann number in translational invariant systems. Sci. Rep. 2019, 9, 9106. [Google Scholar] [CrossRef]
- Bascone, F.; Leonforte, L.; Spagnolo, B.; Valenti, D.; Carollo, A. Finite temperature geometric properties of the Kitaev honeycomb model. Phys. Rev. B 2019, 99, 205155. [Google Scholar] [CrossRef]
- Leonforte, L.; Valenti, D.; Spagnolo, B.; Dubkov, A.A.; Carollo, A. Haldane Model at finite temperature. J. Stat. Mech. Theory Exp. 2019. in Press. [Google Scholar] [CrossRef]
- Bascone, F.; Leonforte, L.; Valenti, D.; Spagnolo, B.; Carollo, A. On critical properties of Berry curvature in Kitaev honeycomb model. J. Stat. Mech. Theory Exp. 2019. in Press. [Google Scholar] [CrossRef]
- Bach, V.; Lieb, E.H.; Solovej, J.P. Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 1994, 76, 3–89. [Google Scholar] [CrossRef]
- Šafránek, D. Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 2017, 95, 052320. [Google Scholar] [CrossRef]
- Knott, P.A. A search algorithm for quantum state engineering and metrology. New J. Phys. 2016, 18, 073033. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carollo, A.; Spagnolo, B.; Valenti, D. Incompatibility in Multi-Parameter Quantum Metrology with Fermionic Gaussian States. Proceedings 2019, 12, 34. https://doi.org/10.3390/proceedings2019012034
Carollo A, Spagnolo B, Valenti D. Incompatibility in Multi-Parameter Quantum Metrology with Fermionic Gaussian States. Proceedings. 2019; 12(1):34. https://doi.org/10.3390/proceedings2019012034
Chicago/Turabian StyleCarollo, Angelo, Bernardo Spagnolo, and Davide Valenti. 2019. "Incompatibility in Multi-Parameter Quantum Metrology with Fermionic Gaussian States" Proceedings 12, no. 1: 34. https://doi.org/10.3390/proceedings2019012034