Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches
<p>The schematic diagram of the CO<sub>2</sub> absorption system.</p> "> Figure 2
<p>Solubility of CO<sub>2</sub> in ionic liquid [TBP][TFA], aqueous MDEA (10, 30, and 50 wt.%) at a CO<sub>2</sub> partial pressure range of 2–20 bar at 298.15 K.</p> "> Figure 3
<p>The comparison of Henry’s Law constant value for ionic liquid [TBP][TFA] and aqueous MDEA (10, 30, and 50 wt.%) at 298.15 K.</p> "> Figure 4
<p>Sigma profiles of aqueous MDEA, [TBP][TFA], and CO<sub>2</sub>.</p> "> Figure 5
<p>Sigma potentials of aqueous MDEA, [TBP][TFA], and CO<sub>2</sub>.</p> "> Figure 6
<p>Preparative scheme for [TBP][TFA] ionic liquid.</p> "> Figure 7
<p>(<b>a</b>) <sup>1</sup>H NMR spectrum of [TBP][TFA] and (<b>b</b>) <sup>13</sup>C NMR spectrum of [TBP][TFA] ionic liquid. The letters correspond to their respective peaks, with each peak labeled using the same alphabet.</p> "> Figure 8
<p>FT−IR spectrum of [TBP][TFA] ionic liquid.</p> "> Figure 9
<p>Densities of (<b>a</b>) 10 wt.% aqueous MDEA–[TBP][TFA], (<b>b</b>) 30 wt.% aqueous MDEA–[TBP][TFA], and (<b>c</b>) 50 wt.% aqueous MDEA–[TBP][TFA] containing different [TBP][TFA] concentrations at the temperature range of 20–80 °C.</p> "> Figure 10
<p>Viscosities of (<b>a</b>) 10 wt.% aqueous MDEA–[TBP][TFA], (<b>b</b>) 30 wt.% aqueous MDEA– [TBP][TFA], and (<b>c</b>) 50 wt.% aqueous MDEA–[TBP][TFA] containing different [TBP][TFA] concentrations at the temperature range of 20–80°C.</p> "> Figure 11
<p>Three-dimensional RSM plots illustrating the impact of various parameters on the CO<sub>2</sub> removal capacity: (<b>a</b>) MDEA (wt.%) vs. IL (wt.%); (<b>b</b>) temperature (°C) vs. pressure (bar); (<b>c</b>) MDEA (wt.%) vs. pressure (bar); (<b>d</b>) IL (wt.%) vs. pressure (bar); (<b>e</b>) IL (wt.%) vs. temperature (°C); (<b>f</b>) MDEA (wt.%) vs. temperature (°C). The colors in the 3D RSM plot represent the response values, with colors like blue and green indicating lower values and red indicating higher values. The red and yellow dots in the 3D RSM plot represent specific experimental runs, highlighting critical and intermediate response values.</p> "> Figure 11 Cont.
<p>Three-dimensional RSM plots illustrating the impact of various parameters on the CO<sub>2</sub> removal capacity: (<b>a</b>) MDEA (wt.%) vs. IL (wt.%); (<b>b</b>) temperature (°C) vs. pressure (bar); (<b>c</b>) MDEA (wt.%) vs. pressure (bar); (<b>d</b>) IL (wt.%) vs. pressure (bar); (<b>e</b>) IL (wt.%) vs. temperature (°C); (<b>f</b>) MDEA (wt.%) vs. temperature (°C). The colors in the 3D RSM plot represent the response values, with colors like blue and green indicating lower values and red indicating higher values. The red and yellow dots in the 3D RSM plot represent specific experimental runs, highlighting critical and intermediate response values.</p> "> Figure 12
<p>Comparison of CO<sub>2</sub> removal capacity and heat capacity at optimum temperatures and pressures.</p> ">
Abstract
:1. Introduction
2. Computational and Experimental Details
2.1. Thermodynamic Properties and Interaction Energy Predictions Using COSMO-RS
2.2. Experimental Section
2.2.1. Materials and Reagents
2.2.2. Apparatus
2.2.3. Preparation of the Absorbent
Synthesis of the Tetrabutylphosphonium Trifluoroacetate Ionic Liquid
Preparation of Aqueous MDEA–[TBP][TFA] Hybrid Solvents
2.2.4. Design of Experiment: RSM-FC-CCD
2.2.5. Thermophysical Characterization of MDEA-[TBP][TFA]
Density and Viscosity
Heat Capacity Measurement
3. Results and Discussion
3.1. Prediction of Thermodynamic Properties of Aqueous MDEA and [TBP][TFA] for CO2 Absorption Using COSMO-RS
3.2. Predictions of the Sigma Profile, Sigma Potential, and Interaction Energy Using COSMO-RS
3.3. Preparation of the Novel Aqueous MDEA–[TBP][TFA] Hybrid Solvent
3.3.1. Synthesis and Characterization of [TBP][TFA] Ionic Liquid
3.3.2. Thermophysical Characterization of the Aqueous MDEA-[TBP][TFA] Hybrid Solvent
3.4. CO2 Absorption Study of Aqueous MDEA– [TBP][TFA] Hybrid Solvents Using RSM
3.5. Comparison of CO2 Removal Capacity and Heat Capacity of Hybrid Solvents with Aqueous MDEA and [TBP][TFA] Ionic Liquid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, K.; Sun, R.; Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy 2017, 141, 1466–1478. [Google Scholar] [CrossRef]
- De Gouw, J.A.; Parrish, D.D.; Frost, G.J.; Trainer, M. Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future 2014, 2, 75–82. [Google Scholar] [CrossRef]
- Nugroho, A.A.; Azis, M.M.; Ariyanto, T. An Approach For Selecting CO_2 Removal Technology In Indonesia’s Upstream Natural Gas Industry Using AHP Method. J. Appl. Sci. Eng. 2024, 27, 2559–2570. [Google Scholar]
- Yi, N.; Li, S.; Wang, X.; Kong, F.; Li, X.; Ren, Y.; Liu, H.; Xu, S. Novel amine emissions control methods for CO2 capture based on reducing amine concentration in the scrubbing liquid. Sep. Purif. Technol. 2025, 354, 129295. [Google Scholar] [CrossRef]
- Odunlami, O.; Vershima, D.; Oladimeji, T.; Nkongho, S.; Ogunlade, S.; Fakinle, B. Advanced techniques for the capturing and separation of CO2—A review. Results Eng. 2022, 15, 100512. [Google Scholar] [CrossRef]
- Azzouz, A.; Platon, N.; Nousir, S.; Ghomari, K.; Nistor, D.; Shiao, T.C.; Roy, R. OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep. Purif. Technol. 2013, 108, 181–188. [Google Scholar] [CrossRef]
- Mak, J.; Mokhatab, S.; Poe, W. Natural gas treating. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Gulf Professional Publishing: Houston, TX, USA, 2015; pp. 181–222. [Google Scholar]
- Gautam, A.; Mondal, M.K. Review of recent trends and various techniques for CO2 capture: Special emphasis on biphasic amine solvents. Fuel 2023, 334, 126616. [Google Scholar] [CrossRef]
- Vega, F.; Cano, M.; Camino, S.; Fernández, L.M.G.; Portillo, E.; Navarrete, B. Solvents for carbon dioxide capture. In Carbon Dioxide Chemistry, Capture and Oil Recovery; IntechOpen: London, UK, 2018; Volume 32, pp. 137–144. [Google Scholar]
- Han, S.-C.; Sung, H.; Noh, H.-W.; Mazari, S.A.; Moon, J.-H.; Kim, K.-M. Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy. Renew. Sustain. Energy Rev. 2024, 197, 114362. [Google Scholar] [CrossRef]
- Lawal, A.O.; Idem, R.O. Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams. Ind. Eng. Chem. Res. 2006, 45, 2601–2607. [Google Scholar] [CrossRef]
- Shahid, M.Z.; Maulud, A.S.; Bustam, M.A.; Suleman, H.; Halim, H.N.A.; Shariff, A.M. Rate-based modeling for packed absorption column of the MEA–CO2–water system at high-pressure and High-CO2 loading conditions. Ind. Eng. Chem. Res. 2019, 58, 12235–12246. [Google Scholar] [CrossRef]
- Meng, F.; Meng, Y.; Ju, T.; Han, S.; Lin, L.; Jiang, J. Research progress of aqueous amine solution for CO2 capture: A review. Renew. Sustain. Energy Rev. 2022, 168, 112902. [Google Scholar] [CrossRef]
- Kortunov, P.V.; Siskin, M.; Baugh, L.S.; Calabro, D.C. In Situ Nuclear Magnetic Resonance Mechanistic Studies of Carbon Dioxide Reactions with Liquid Amines in Non-aqueous Systems: Evidence for the Formation of Carbamic Acids and Zwitterionic Species. Energy Fuels 2015, 29, 5940–5966. [Google Scholar] [CrossRef]
- Zheng, Y.; El Ahmar, E.; Simond, M.; Ballerat-Busserolles, K.; Zhang, P. CO2 Heat of Absorption in Aqueous Solutions of MDEA and MDEA/Piperazine. J. Chem. Eng. Data 2020, 65, 3784–3793. [Google Scholar] [CrossRef]
- Oexmann, J.; Kather, A.; Linnenberg, S.; Liebenthal, U. Post-combustion CO2 capture: Chemical absorption processes in coal-fired steam power plants. Greenh. Gases Sci. Technol. 2012, 2, 80–98. [Google Scholar] [CrossRef]
- Olugbenga, A.G. Dependence of operational properties on reboiler duty in the removal of CO2 from natural gas with aspen Hysys. Results Eng. 2024, 21, 101755. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, N.; Hong, Y.; Wang, R.; Li, Q.; Li, M.; Wang, L. Tertiary amine based-biphasic solvent using ionic liquids as an activator to advance the energy-efficient CO2 capture. Sep. Purif. Technol. 2025, 355, 129671. [Google Scholar] [CrossRef]
- Vieira, N.S.; Ferreira, M.L.; Castro, P.J.; Araújo, J.M.; Pereiro, A.B. Fluorinated Ionic Liquids as Task-Specific Materials: An Overview of Current Research; IntechOpen: London, UK, 2021. [Google Scholar]
- Yan, H.; Zhao, L.; Bai, Y.; Li, F.; Dong, H.; Wang, H.; Zhang, X.; Zeng, S. Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption. ACS Sustain. Chem. Eng. 2020, 8, 2523–2530. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Sarwar, M.I.; Mecerreyes, D. Polymeric ionic liquids for CO2 capture and separation: Potential, progress and challenges. Polym. Chem. 2015, 6, 6435–6451. [Google Scholar] [CrossRef]
- Das, I.; Swami, K.R.; Gardas, R.L. Exploring the potential of ethylenediamine based protic ionic liquids for carbon capture: A study on thermophysical properties and CO2 absorption behavior. Chem. Thermodyn. Therm. Anal. 2024, 15, 100138. [Google Scholar] [CrossRef]
- Renati, P.; Madl, P. What Is the “Hydrogen Bond”? A QFT-QED Perspective. Int. J. Mol. Sci. 2024, 25, 3846. [Google Scholar] [CrossRef]
- Oko, E.; Zacchello, B.; Wang, M.; Fethi, A. Process analysis and economic evaluation of mixed aqueous ionic liquid and monoethanolamine (MEA) solvent for CO2 capture from a coke oven plant. Greenh. Gases Sci. Technol. 2018, 8, 686–700. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Y.-n.; Wang, Y.; Ren, S.; Han, J.; Chen, A. CO2 absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of CO2. Fluid Phase Equilibria 2015, 399, 40–49. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical properties of ionic liquids: Database and evaluation. J. Phys. Chem. Ref. Data 2006, 35, 1475–1517. [Google Scholar] [CrossRef]
- Fauzi, A.H.M.; Amin, N.A.S. An overview of ionic liquids as solvents in biodiesel synthesis. Renew. Sustain. Energy Rev. 2012, 16, 5770–5786. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, C.; Fu, T.; Ma, Y.; Yuan, X. Synergistic effect of functionalized ionic liquid and alkanolamines mixed solution on enhancing the mass transfer of CO2 absorption in microchannel. Chem. Eng. J. 2021, 417, 129302. [Google Scholar] [CrossRef]
- Hasib-ur-Rahman, M.; Larachi, F. Prospects of using room-temperature ionic liquids as corrosion inhibitors in aqueous ethanolamine-based CO2 capture solvents. Ind. Eng. Chem. Res. 2013, 52, 17682–17685. [Google Scholar] [CrossRef]
- Qian, W.; Xu, Y.; Xie, B.; Ge, Y.; Shu, H. Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature. Int. J. Greenh. Gas Control. 2017, 56, 194–201. [Google Scholar] [CrossRef]
- Taib, M.M.; Murugesan, T. Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chem. Eng. J. 2012, 181, 56–62. [Google Scholar] [CrossRef]
- Xu, F.; Gao, H.; Dong, H.; Wang, Z.; Zhang, X.; Ren, B.; Zhang, S. Solubility of CO2 in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids. Fluid Phase Equilibria 2014, 365, 80–87. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, H.; Gao, H.; Olson, W.; Liang, Z. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Appl. Energy 2019, 235, 311–319. [Google Scholar] [CrossRef]
- Gohndrone, T.R.; Song, T.; DeSilva, M.A.; Brennecke, J.F. Quantification of ylide formation in phosphonium-based ionic liquids reacted with CO2. J. Phys. Chem. B 2021, 125, 6649–6657. [Google Scholar] [CrossRef] [PubMed]
- Balchandani, S.C.; Singh, R.; Mandal, B. Experimental and COSMO-RS analysis of CO2 solubility in novel aqueous blends of 1-butyl-3-methyl-imidazolium tetrafluoroborate activated by 2-aminoethyl piperazine and bis (3-aminopropyl) amine for post combustion carbon capture. J. Environ. Chem. Eng. 2023, 11, 109099. [Google Scholar] [CrossRef]
- Balchandani, S.; Singh, R. Thermodynamic analysis using COSMO-RS studies of reversible ionic liquid 3-aminopropyl triethoxysilane blended with amine activators for CO2 absorption. J. Mol. Liq. 2021, 324, 114713. [Google Scholar] [CrossRef]
- Alioui, O.; Benguerba, Y.; Alnashef, I.M. Investigation of the CO2-solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods. J. Mol. Liq. 2020, 307, 113005. [Google Scholar] [CrossRef]
- Galiano, F.; Mancuso, R.; Guazzelli, L.; Mauri, M.; Chiappe, C.; Simonutti, R.; Brunetti, A.; Pomelli, C.S.; Barbieri, G.; Gabriele, B. Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. J. Membr. Sci. 2021, 635, 119479. [Google Scholar] [CrossRef]
- Rather, S.-u.; Bamufleh, H.S.; Alhumade, H.; Saeed, U.; Taimoor, A.A.; Sulaimon, A.A.; Alalayah, W.M.; Shariff, A.M. Research Article Theoretical and Experimental Studies of 1-Butyl-3-methylimidazolium Methanesulfonate Ionic Liquid. Gas 2023, 12, 14. [Google Scholar]
- Veza, I.; Spraggon, M.; Fattah, I.R.; Idris, M. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results Eng. 2023, 18, 101213. [Google Scholar] [CrossRef]
- Olabinjo, O.O. Response Surface Techniques as an Inevitable Tool in Optimization Process. In Response Surface Methods-Theory, Applications and Optimization Techniques; IntechOpen: London, UK, 2024. [Google Scholar]
- Susaimanickam, A.; Manickam, P.; Joseph, A.A. A comprehensive review on RSM-coupled optimization techniques and its applications. Arch. Comput. Methods Eng. 2023, 30, 4831–4853. [Google Scholar] [CrossRef]
- Ardeshiri, A.; Rashidi, H. Performance of Water-Lean Solvent for Postcombustion Carbon Dioxide Capture in a Process-Intensified Absorber: Experimental, Modeling, and Optimization Using RSM and ML. Ind. Eng. Chem. Res. 2023, 62, 20821–20832. [Google Scholar] [CrossRef]
- Warrag, S.E.; Darwish, A.S.; Adeyemi, I.A.; Hadj-Kali, M.K.; Kroon, M.C.; AlNashef, I.M. Extraction of pyridine from n-alkane mixtures using methyltriphenylphosphonium bromide-based deep eutectic solvents as extractive denitrogenation agents. Fluid Phase Equilibria 2020, 517, 112622. [Google Scholar] [CrossRef]
- Hasib-ur-Rahman, M.; Bouteldja, H.; Fongarland, P.; Siaj, M.; Larachi, F. Corrosion behavior of carbon steel in alkanolamine/room-temperature ionic liquid based CO2 capture systems. Ind. Eng. Chem. Res. 2012, 51, 8711–8718. [Google Scholar] [CrossRef]
- Azhar, F.N.A.; Taha, M.F.; Mat Ghani, S.M.; Ruslan, M.S.H.; Md Yunus, N.M. Experimental and Mathematical Modelling of Factors Influencing Carbon Dioxide Absorption into the Aqueous Solution of Monoethanolamine and 1-Butyl-3-methylimidazolium Dibutylphosphate Using Response Surface Methodology (RSM). Molecules 2022, 27, 1779. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Ye, Y.; Chen, L.; Qi, Z.; Freund, H.; Sundmacher, K. An Overview of Mutual Solubility of Ionic Liquids and Water Predicted by COSMO-RS. Ind. Eng. Chem. Res. 2012, 51, 6256–6264. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, X.; Xu, B.; Gao, G.; Wu, F.; Li, X.; Zhang, L.; Luo, C. Effect of water on CO2 absorption by a novel anhydrous biphasic absorbent: Phase change behavior, absorption performance, reaction heat, and absorption mechanism. Sep. Purif. Technol. 2023, 325, 124624. [Google Scholar] [CrossRef]
- Wasewar, K. Carbon Dioxide Capture by Ionic Liquids. In Advances in Carbon Capture and Utilization; Pant, D., Kumar Nadda, A., Pant, K.K., Agarwal, A.K., Eds.; Springer: Singapore, 2021; pp. 147–194. [Google Scholar]
- Quaid, T.; Reza, M.T. Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. Clean Technol. 2021, 3, 490–502. [Google Scholar] [CrossRef]
- Khan, S.N.; Hailegiorgis, S.M.; Man, Z.; Shariff, A.M.; Garg, S. Thermophysical properties of aqueous N-methyldiethanolamine (MDEA) and ionic liquids 1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf], 1-butyl-3-methylimidazolium acetate [bmim][Ac] hybrid solvents for CO2 capture. Chem. Eng. Res. Des. 2017, 121, 69–80. [Google Scholar] [CrossRef]
No. | MDEA (wt.%) | [TBP][TFA] (wt.%) | H2O (wt.%) |
---|---|---|---|
1 | 10 | 0 | 90 |
2 | 10 | 2 | 88 |
3 | 10 | 11 | 79 |
4 | 10 | 20 | 70 |
5 | 30 | 0 | 70 |
6 | 30 | 2 | 68 |
7 | 30 | 11 | 59 |
8 | 30 | 20 | 50 |
9 | 50 | 0 | 50 |
10 | 50 | 2 | 48 |
11 | 50 | 11 | 39 |
12 | 50 | 20 | 30 |
Coded Levels of Each Factor in FC-CCD | Factors with Actual Level | |||
---|---|---|---|---|
MDEA (wt.%) (x1) | Ionic Liquid (wt.%) (x2) | Temperature (x3) | Pressure (x4) | |
−1 | 10 | 2 | 30 | 2 |
0 | 30 | 11 | 45 | 16 |
1 | 50 | 20 | 60 | 30 |
T (K) | [TBP][TFA] | ||
Density, ρ (g/mL) | Volume (Å3) | COSMO-Volume (Å3) | |
298.15 | 1.0060 | 614.78 | 493.23 |
303.15 | 1.0008 | 617.98 | 493.23 |
308.15 | 0.9956 | 621.2 | 493.23 |
313.15 | 0.9905 | 624.43 | 493.23 |
318.15 | 0.9853 | 627.68 | 493.23 |
323.15 | 0.9802 | 630.94 | 493.23 |
328.15 | 0.9752 | 634.22 | 493.23 |
333.15 | 0.9701 | 637.52 | 493.23 |
T (K) | 10 wt.% aqueous MDEA | ||
Density, ρ (g/mL) | Volume (Å3) | COSMO-Volume (Å3) | |
298.15 | 0.9328 | 500.76 | 390.89 |
303.15 | 0.9278 | 503.45 | 390.89 |
308.15 | 0.9229 | 506.16 | 390.89 |
313.15 | 0.9179 | 508.87 | 390.89 |
318.15 | 0.913 | 511.6 | 390.89 |
323.15 | 0.9082 | 514.34 | 390.89 |
328.15 | 0.9033 | 517.09 | 390.89 |
333.15 | 0.8985 | 519.85 | 390.89 |
T (K) | 30 wt.% aqueous MDEA | ||
Density, ρ (g/mL) | Volume (Å3) | COSMO-Volume (Å3) | |
298.15 | 0.95998 | 836.5 | 660.63 |
303.15 | 0.95493 | 840.93 | 660.63 |
308.15 | 0.94991 | 845.37 | 660.63 |
313.15 | 0.94492 | 849.84 | 660.63 |
318.15 | 0.93996 | 854.32 | 660.63 |
323.15 | 0.93503 | 858.83 | 660.63 |
328.15 | 0.93012 | 863.36 | 660.63 |
333.15 | 0.92525 | 867.91 | 660.63 |
T (K) | 50 wt.% aqueous MDEA | ||
Density, ρ (g/mL) | Volume (Å3) | COSMO-Volume (Å3) | |
298.15 | 0.97159 | 1172.25 | 930.36 |
303.15 | 0.96652 | 1178.4 | 930.36 |
308.15 | 0.96147 | 1184.59 | 930.36 |
313.15 | 0.95646 | 1190.8 | 930.36 |
318.15 | 0.95147 | 1197.05 | 930.36 |
323.15 | 0.9465 | 1203.32 | 930.36 |
328.15 | 0.94157 | 1209.63 | 930.36 |
333.15 | 0.93666 | 1215.97 | 930.36 |
System | EMF kcal/mol | EHB kcal/mol | EvdW kcal/mol | Etotal kcal/mol |
---|---|---|---|---|
System I | ||||
[TBP][TFA] | 11.46 | −1.63 | −20.90 | −11.06 |
[TBP][TFA] + CO2 | 12.32 | −1.63 | −23.00 | −12.31 |
10 wt.% aqueous MDEA | 0.56 | −5.78 | −1.60 | −6.82 |
10 wt.% aqueous MDEA + CO2 | 1.41 | −5.78 | −3.71 | −8.07 |
30 wt.% aqueous MDEA | 1.10 | −5.65 | −2.93 | −7.49 |
30 wt.% aqueous MDEA + CO2 | 1.95 | −5.65 | −5.03 | −8.74 |
50 wt.% aqueous MDEA | 1.63 | −5.53 | −4.25 | −8.15 |
50 wt.% aqueous MDEA + CO2 | 2.49 | −5.53 | −6.36 | −9.40 |
System II | ||||
10 wt.% aqueous MDEA − [TBP][TFA] + CO2 | 12.88 | −7.41 | −24.60 | −19.14 |
30 wt.% aqueous MDEA − [TBP][TFA] + CO2 | 13.41 | −7.28 | −25.93 | −19.80 |
50 wt.% aqueous MDEA − [TBP][TFA] + CO2 | 13.95 | −7.16 | −27.25 | −20.46 |
T | 10 wt.% MDEA | 10 wt.% MDEA 2 wt.% IL | 10 wt.% MDEA 20 wt.% IL | 50 wt.% MDEA | 50 wt.% MDEA 2 wt.% IL | 50 wt.% MDEA 20 wt.% IL | [TBP][TFA] IL |
---|---|---|---|---|---|---|---|
°C | J/g °C | ||||||
20 | 3.37 | 3.11 | 2.97 | 4.99 | 4.72 | 3.74 | 1.71 |
30 | 3.34 | 3.08 | 2.94 | 5.25 | 4.96 | 3.91 | 1.69 |
40 | 3.34 | 3.08 | 2.94 | 5.42 | 5.1 | 4.02 | 1.72 |
50 | 3.38 | 3.13 | 3.00 | 5.65 | 5.29 | 4.18 | 1.79 |
60 | 3.36 | 3.11 | 3.00 | 5.88 | 5.48 | 4.35 | 1.81 |
70 | 3.36 | 3.09 | 3.01 | 6.12 | 5.69 | 4.52 | 1.85 |
80 | 3.34 | 3.06 | 3.04 | 6.34 | 5.85 | 4.67 | 1.88 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Response | |
---|---|---|---|---|---|
A: MDEA | B: IL | C: T | D: P | CO2 Removal Capacity | |
wt.% | wt.% | °C | Bar | Actual Value (mol/kg) | Predicted Value (mol/kg) |
30 | 11 | 45 | 16 | 6.61 | 6.88 |
30 | 11 | 45 | 16 | 6.92 | 6.88 |
30 | 11 | 45 | 30 | 9.66 | 9.78 |
50 | 20 | 30 | 30 | 12.12 | 12.14 |
50 | 20 | 60 | 2 | 1.50 | 2.12 |
10 | 2 | 30 | 30 | 9.26 | 8.84 |
30 | 11 | 45 | 16 | 6.98 | 6.88 |
30 | 20 | 45 | 16 | 6.23 | 6.38 |
30 | 11 | 30 | 16 | 7.54 | 7.9 |
10 | 20 | 60 | 2 | 2.18 | 1.71 |
30 | 2 | 45 | 16 | 6.92 | 6.87 |
50 | 2 | 60 | 30 | 8.88 | 8.86 |
50 | 2 | 60 | 2 | 3.87 | 3.71 |
30 | 11 | 45 | 2 | 3.61 | 3.6 |
50 | 2 | 30 | 2 | 5.43 | 5.47 |
30 | 11 | 45 | 16 | 6.97 | 6.88 |
30 | 11 | 45 | 16 | 7.42 | 6.88 |
10 | 11 | 45 | 16 | 5.40 | 5.62 |
10 | 20 | 30 | 30 | 9.52 | 9.45 |
30 | 11 | 45 | 16 | 6.70 | 6.88 |
50 | 20 | 60 | 30 | 8.69 | 8.45 |
10 | 2 | 60 | 30 | 6.61 | 6.79 |
50 | 20 | 30 | 2 | 4.51 | 4.1 |
30 | 11 | 60 | 16 | 6.13 | 5.89 |
50 | 11 | 45 | 16 | 7.68 | 7.57 |
10 | 20 | 60 | 30 | 7.02 | 7.18 |
10 | 2 | 30 | 2 | 2.81 | 2.82 |
10 | 20 | 30 | 2 | 2.04 | 2.25 |
50 | 2 | 30 | 30 | 12.11 | 12.04 |
10 | 2 | 60 | 2 | 2.33 | 2.49 |
ANOVA | ||||||
---|---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 218.8 | 14 | 15.63 | 121.61 | <0.0001 | significant |
A-MDEA | 17.21 | 1 | 17.21 | 133.95 | <0.0001 | |
B-IL | 1.08 | 1 | 1.08 | 8.42 | 0.011 | |
C-Temperature | 18.22 | 1 | 18.22 | 141.75 | <0.0001 | |
D-Pressure | 171.53 | 1 | 171.53 | 1334.77 | <0.0001 | |
AB | 0.6504 | 1 | 0.6504 | 5.06 | 0.0399 | |
AC | 2.05 | 1 | 2.05 | 15.94 | 0.0012 | |
AD | 0.7271 | 1 | 0.7271 | 5.66 | 0.0311 | |
BC | 0.0438 | 1 | 0.0438 | 0.3406 | 0.5681 | |
BD | 1.37 | 1 | 1.37 | 10.65 | 0.0052 | |
CD | 2.96 | 1 | 2.96 | 23.04 | 0.0002 | |
A2 | 0.208 | 1 | 0.208 | 1.62 | 0.2226 | |
B2 | 0.1625 | 1 | 0.1625 | 1.26 | 0.2784 | |
C2 | 0.0006 | 1 | 0.0006 | 0.005 | 0.9444 | |
D2 | 0.0922 | 1 | 0.0922 | 0.7172 | 0.4104 | |
Residual | 1.93 | 15 | 0.1285 | |||
Lack of Fit | 1.53 | 10 | 0.1533 | 1.94 | 0.2399 | not significant |
Pure Error | 0.3944 | 5 | 0.0789 | |||
Cor Total | 220.73 | 29 | ||||
Fit Statistics | ||||||
Std. Dev. | 0.3585 | R2 | 0.9913 | |||
Mean | 6.45 | Adjusted R2 | 0.9831 | |||
C.V. % | 5.55 | Predicted R2 | 0.945 | |||
Adeq Precision | 41.9434 |
Condition | Removal Capacity (mol/kg) | Standard Deviation | |
---|---|---|---|
Predicted | Actual | ||
50:20:30:30 | 12.14 | 11.45 | 0.48 |
12.14 | 10.75 | 0.98 | |
12.14 | 10.20 | 1.37 | |
12.14 | 13.01 | 0.61 | |
Coefficient of variation (%) | 6.50 |
Absorbent | Removal Capacity (mol/kg) |
---|---|
10 wt.% MDEA | 9.83 |
10 wt.% MDEA:2 wt.% IL | 9.26 |
10 wt.% MDEA:20 wt.% IL | 9.52 |
50 wt.% MDEA | 14.64 |
50 wt.% MDEA:2 wt.% IL | 12.11 |
50 wt.% MDEA:20 wt.% IL | 12.10 |
[TBP][TFA] IL | 10.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Rasdi, F.L.; Jeyaseelan, R.; Taha, M.F.; Mohd Razip, M.A.A. Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches. Processes 2024, 12, 2626. https://doi.org/10.3390/pr12122626
Mohd Rasdi FL, Jeyaseelan R, Taha MF, Mohd Razip MAA. Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches. Processes. 2024; 12(12):2626. https://doi.org/10.3390/pr12122626
Chicago/Turabian StyleMohd Rasdi, Fairuz Liyana, Revathi Jeyaseelan, Mohd Faisal Taha, and Mohamad Amirul Ashraf Mohd Razip. 2024. "Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches" Processes 12, no. 12: 2626. https://doi.org/10.3390/pr12122626
APA StyleMohd Rasdi, F. L., Jeyaseelan, R., Taha, M. F., & Mohd Razip, M. A. A. (2024). Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches. Processes, 12(12), 2626. https://doi.org/10.3390/pr12122626