Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization
<p>Hydrodynamic cavitation-enhanced ZnO carbonation reaction experimental apparatus.</p> "> Figure 2
<p>Schematic diagram of hydrodynamic cavitation reactor structure (α is the inlet angle, β (40°) is the outlet cone angle, L (10 mm) is the throat length, d<sub>0</sub> is the throat diameter, d<sub>1</sub> (20 mm) is the inlet diameter, d<sub>2</sub> (20 mm) is the outlet diameter, d<sub>3</sub> (15 mm) is the carbon dioxide gas inlet diameter).</p> "> Figure 3
<p>Process flow chart for preparing Nano ZnO.</p> "> Figure 4
<p>Thermogravimetric curve.</p> "> Figure 5
<p>(<b>a</b>) XRD of Zn<sub>5</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>6</sub>; (<b>b</b>) Raman spectrum of Zn<sub>5</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>6</sub>.</p> "> Figure 5 Cont.
<p>(<b>a</b>) XRD of Zn<sub>5</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>6</sub>; (<b>b</b>) Raman spectrum of Zn<sub>5</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>6</sub>.</p> "> Figure 6
<p>Effect of reaction time on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 7
<p>Effect of reaction temperature on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 8
<p>Effects of solid–liquid ratio on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 9
<p>Effect of calcination temperature on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 10
<p>Effect of incident angle on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 11
<p>Effect of cavitation number on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 12
<p>Effects of different position heights on specific surface area and carbonization ratio of Nano ZnO.</p> "> Figure 13
<p>Schematic diagram of nucleation and growth of basic zinc carbonate.</p> "> Figure 14
<p>Hydraulic cavitation strengthens carbonization mechanism.</p> "> Figure 15
<p>(<b>a</b>) Formation of basic zinc carbonate by hydro-cavitation-enhanced carbonization; (<b>b</b>) particle size distribution graph of basic zinc carbonate.</p> "> Figure 16
<p>Residual normal distribution diagram. (<b>a</b>) BET; (<b>b</b>) Φ.</p> "> Figure 17
<p>Scatter plot between residuals and predicted values. (<b>a</b>) BET; (<b>b</b>) Φ.</p> "> Figure 18
<p>Influence of interaction of three factors on specific surface area of BET. (<b>a</b>) AB; (<b>b</b>) AC; (<b>c</b>) BC.</p> "> Figure 19
<p>Influence of interaction of three factors on specific surface area of carbonization rate. (<b>a</b>) AB; (<b>b</b>) AC; (<b>c</b>) BC.</p> "> Figure 19 Cont.
<p>Influence of interaction of three factors on specific surface area of carbonization rate. (<b>a</b>) AB; (<b>b</b>) AC; (<b>c</b>) BC.</p> "> Figure 20
<p>Product SEM image. (<b>a</b>) High resolution; (<b>b</b>) Low resolution.</p> "> Figure 21
<p>Product XRD pattern.</p> "> Figure 22
<p>Product absorption and desorption curve.</p> "> Figure 23
<p>Product particle size distribution map.</p> "> Figure 24
<p>Product Raman spectrum.</p> ">
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Ingredients
2.2. Equipment and Instruments
2.3. Method
2.3.1. Preparation Method
2.3.2. Single-Factor Experimental Analysis
2.3.3. Response Surface Optimization Experiment
3. Results and Discussion
3.1. Single-Factor Experiment Results
3.1.1. Effect of Process Parameters on Specific Surface Area and Carbonization Rate of Nano ZnO
- (1)
- Reaction time
- (2)
- Reaction temperature
- (3)
- Solid–liquid ratio
- (4)
- Calcination temperature
3.1.2. Effect of Structural Parameters of Carbonization Reactor on Specific Surface Area and Carbonization Rate of Nano ZnO
- (1)
- Incident angle (α)
- (2)
- Cavitation number (σ)
- (3)
- Height of different positions (H)
3.2. Hydraulic Cavitation Mechanism for the Preparation of Nano ZnO Carbonation Reaction
3.2.1. The Growth Process of Nano ZnO
3.2.2. Strengthening Mechanism of Hydraulic Cavitation
3.3. Response Surface Method Was Used to Analyze Optimum Conditions of Nano ZnO Preparation
3.3.1. Determination of Factors for Preparation of Nano Zno-Response Surface (RSM) by Carbonization Method
3.3.2. Response Surface Optimization Results
3.3.3. Interaction Analysis of Three Factors on Response Surface
3.4. Optimal Process Verification and Product Analysis
3.4.1. Verification Experiment
3.4.2. Product Analysis
4. Conclusions
- (1)
- Under conventional conditions, the low carbonization rate is mainly due to the in situ growth of basic magnesium carbonate on the surface of zinc oxide, which inhibits the carbonization reaction. The cavitation effect of hydrodynamic cavitation can generate immense energy to break the in situ growth adsorbed on the zinc oxide surface and improve the agglomeration of basic zinc carbonate. This helps to enhance solid–liquid mass transfer and promote the carbonization reaction, thereby effectively increasing the reaction rate and carbonization rate.
- (2)
- In the hydrodynamic cavitation-enhanced process, the influence patterns of various process parameters on the carbonization rate and specific surface area are similar to those of the mechanical stirring and bubbling method. Compared to traditional mechanical stirring and bubbling, the specific surface area increased by 1.5 times, and the carbonization rate improved by 10%. Based on single-factor experiments, the effects of seven factors on the carbonization rate and specific surface area in the preparation of Nano ZnO were explored, and four optimal factors were determined: reaction time of 120 min, reaction temperature of 80 °C, an incidence angle of 60°, and calcination temperature of 500 °C for 1 h. These were identified as the best process parameters.
- (3)
- The process was optimized using response surface methodology (RSM), and the response values were predicted under different combinations of independent variables through a regression equation. The optimal process parameters that maximize the response variables were determined as follows: reaction time of 120 min, reaction temperature of 80 °C, material-to-liquid ratio of 5.011:100, calcination temperature of 500 °C, incidence angle of 60°, cavitation number of 0.366, and position height of 301.128 mm. The interaction between the material-to-liquid ratio and position height was found to have a significant effect on process parameter variations. After conducting seven repeated validation experiments, the measured average values for carbonization rate and specific surface area were 93.937% and 62.377 m2/g, respectively, which are very close to the predicted values from the regression equation—94.623% for the carbonization rate and 63.190 m2/g for the specific surface area. Therefore, the optimized process conditions in this study are reasonable and reliable, providing valuable insights for the preparation of Nano ZnO using the hydrodynamic cavitation-enhanced carbonization method and enabling its comprehensive utilization.
- (4)
- The experimental verification showed that the product prepared by this process had a high content of Nano ZnO, excellent crystallinity, and a relatively uniform sheet-like morphology. The hydrodynamic cavitation-enhanced carbonization method for preparing Nano ZnO demonstrated good industrial practicability. The properties of the experimentally prepared product met the standards for active zinc oxide, and compared to the products generated by traditional mechanical stirring methods, each performance index was superior. This study focused on the effects of the hydrodynamic cavitation-enhanced carbonization method on the carbonization rate and specific surface area during the preparation of Nano ZnO. Future research needs to further investigate the impact of the cavitation number in hydrodynamic cavitation on the preparation process and the product properties of Nano ZnO. This will help to further optimize the preparation process, improve product performance, and expand its industrial application range.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Tan, X.; Sun, S.; Zhang, L.; Zhu, P.; Yu, J.; Gao, C. Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array. Acta Mater. Compos. Sin. 2023, 2169. [Google Scholar] [CrossRef]
- Masuki, R.; Nomoto, T.; Arita, R.; Tadano, T. Full optimization of quasiharmonic free energy with an anharmonic lattice model: Application to thermal expansion and pyroelectricity of wurtzite GaN and ZnO. Phys. Rev. B 2023, 107, 134119. [Google Scholar] [CrossRef]
- Ca, N.X.; Hien, N.T.; Fan, X.; Do, P.V.; Yen, V.H.; Hao, P.V.; Quynh, L.K.; Huong, T.T.T.; Quang, V.X. New insights on the luminescence properties and Judd-Ofelt analysis of Er-doped ZnO semiconductor quantum dots. RSC Adv. 2023, 13, 22732–27292. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Jing, J.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020, 8, 3–39. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Ali, F.A.A.; Alhoshan, M. Efficient soluble anionic dye removal and antimicrobial properties of ZnO embedded- Polyphenylsulfone membrane. Water Environ. J. WEJ 2021, 35, 670–684. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M. Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photocatalytic activity. J. Mater. Science. Mater. Electron. 2020, 31, 1084–1093. [Google Scholar] [CrossRef]
- Sakai, D.; Nagashima, K.; Yoshida, H.; Kanai, M.; He, Y.; Zhang, G.; Zhao, X.; Takahashi, T.; Yasui, T.; Hosomi, T.; et al. Substantial Narrowing on the Width of “Concentration Window” of Hydrothermal ZnO Nanowires via Ammonia Addition. Sci. Rep. 2019, 9, 14110–14160. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Izadi, M.; Imani, M. Synthesis and characterization of the special ZnO nanostructure by mechanochemical process. Mater. Lett. 2013, 92, 108–110. [Google Scholar] [CrossRef]
- Zang, D.; Wei, X.; Liu, Q.; Li, Y.; You, R. In-situ growth of ZnO@ZnWO4 heterojunction with flower-like structure by chemical vapor deposition for H2S gas sensor. Appl. Surf. Sci. 2025, 679, 161149. [Google Scholar] [CrossRef]
- Rajput, P.; Vashishtha, P.; Gupta, G.; Kamni. A comparative study on structural and optical properties of ZnO nanoparticles prepared by three different synthesis methods. Mater. Today Proc. 2021, 43, 3856–3861. [Google Scholar] [CrossRef]
- Clarke, B.; Ghandi, K. The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications (Small 44/2023). Small 2023, 19, 2370368. [Google Scholar] [CrossRef]
- Davarnejad, R.; Nikandam, K. Eco-Friendly Technique for Preparation of ZnO Nanoparticles: Pd(II) Ions Adsorption. Chem. Eng. Technol. 2022, 45, 1114–1123. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, T.; Lu, C.; Guo, X.; Xiao, H.; Jia, J.; Zhang, D. Preparation and properties of nano ZnO toughed phenol–urea-formaldehyde foam. J. Appl. Polym. Sci. 2021, 138, 49816. [Google Scholar] [CrossRef]
- Tian, W. Preparation of Nano meter grade Zinc Oxide by Carbon Dioxide techniqu. Power Metall. Ind. 2010, 20, 19–22. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, S.; Xiao, Z.; Mai, Z.; Bai, K.; Chen, J.; Chen, Y.; Liu, J. Catalytic membrane nano reactor with Cu/ZnO in situ immobilized in membrane pores for methanol dehydrogenation to formaldehyde. J. Membr. Sci. 2022, 643, 120014. [Google Scholar] [CrossRef]
- Ge, M.; Petkovšek, M.; Zhang, G.; Jacobs, D.; Coutier-Delgosha, O. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. Int. J. Heat Mass Transf. 2021, 170, 120970. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, G.; Xu, W.; Zhao, Y.; Zhao, F. Review on hydrodynamic cavitation degradation of organic wastewater. J. Drain. Irrig. Mach. Eng. 2023, 41, 913–919. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Y.; Xuan, X.; Zhao, S.; Chen, S. Advances in process intensification based on hydrodynamic cavitation. Chem. Ind. Eng. Prog. 2022, 41, 2243–2255. [Google Scholar] [CrossRef]
- Xu, B.; Liu, X.; Liu, K.; Zhang, W.; Deng, Y.; Shen, X.; Zhang, D.; van Esch, B.P.M.B. Numerical investigation of thermodynamic effect on cavitation performance and cavitation-vortex interaction in an inducer. Ocean Eng. 2024, 312, 119127. [Google Scholar] [CrossRef]
- Luo, J.; Fu, G.; Xu, W.; Zhai, Y.; Bai, L.; Li, J.; Qu, T. Experimental study on attenuation effect of liquid viscosity on shockwaves of cavitation bubbles collapse. Ultrason. Sonochem. 2024, 111, 107063. [Google Scholar] [CrossRef]
- Ananth, A.; Dharaneedharan, S.; Seo, H.; Heo, M.; Boo, J. Soft jet plasma-assisted synthesis of Zinc oxide nanomaterials: Morphology controls and antibacterial activity of ZnO. Chem. Eng. J. 2017, 322, 742–751. [Google Scholar] [CrossRef]
- Subramanyam, C.H.; Kiran Kumar, K.; Venkata Ramana, K.; Gladis Raja Malar, C.; Mohan, S.; Nagalakshmi, V. Ultrasound mediated nano ZnO catalyzed synthesis of new α-aminophosphonates as potential anti-diabetic agents; an in silico ADMET, molecular docking study, α-amylase and α-glucosidase inhibitory activity. Synth. Commun. 2023, 53, 2041–2060. [Google Scholar] [CrossRef]
- Li, J.; Nie, X.; Meng, L.; Zhang, X.; Bai, L.; Chai, D.; Zhang, W.; Zhang, Z.; Dong, G. Microwave-assisted hydrothermal synthesis of Ag/Bi2MoO6/ZnO heterojunction with nano Ag as electronic accelerator pump for high-efficienty photocatalytic degradation of levofloxacin. Appl. Surf. Sci. 2024, 678, 161143. [Google Scholar] [CrossRef]
- Shateri, A.; Jalili, B.; Saffar, S.; Jalili, P.; Domiri Ganji, D. Numerical study of the effect of ultrasound waves on the turbulent flow with chemical reaction. Energy 2024, 289, 129707. [Google Scholar] [CrossRef]
- Gogate, P.R. Intensification of chemical processing applications using ultrasonic and microwave irradiations. Curr. Opin. Chem. Eng. 2017, 17, 9–14. [Google Scholar] [CrossRef]
- Sikka, A.; Singh, D.; Chander, S. Flow dynamics and heat transfer characteristics of air/water mist jet impingement using Eulerian-Eulerian approach. Int. Commun. Heat Mass Transf. 2024, 159, 108003. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, L.; Huang, Y.; Duan, C.; Xu, Y.; Ren, X.; Yu, H. Preparation of Drug-Loaded Chitosan Nano-Microspheres by Impinging Stream and Jet Cavitation. Polym. Mater. Sci. Eng. 2022, 38, 37–49. [Google Scholar] [CrossRef]
- Fedorov, K.; Rayaroth, M.P.; Shah, N.S.; Boczkaj, G. Activated sodium percarbonate-ozone (SPC/O3) hybrid hydrodynamic cavitation system for advanced oxidation processes (AOPs) of 1,4-dioxane in water. Chem. Eng. J. 2023, 456, 141027. [Google Scholar] [CrossRef]
- Rokhsar Talabazar, F.; Sheibani Aghdam, A.; Jafarpour, M.; Grishenkov, D.; Koşar, A.; Ghorbani, M. Chemical effects in “hydrodynamic cavitation on a chip”: The role of cavitating flow patterns. Chem. Eng. J. 2022, 445, 136734. [Google Scholar] [CrossRef]
- Sun, X.; Xu, H.; Xuan, X.; Manickam, S.; Boczkaj, G.; Wang, B. Assessing the industrialization progress of hydrodynamic cavitation process intensification technology: A review. Curr. Opin. Chem. Eng. 2024, 45, 101037. [Google Scholar] [CrossRef]
- Xue, L.; Hao, Z.; Ren, W.; Wang, Y.; Liu, G.; Liu, J.; Wang, H.; Bie, H. Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor. Ultrason. Sonochem. 2024, 109, 106999. [Google Scholar] [CrossRef] [PubMed]
- Demir Karaçoban, E.; Topaç, F.O.; Dindar, E.; Keskinler, B. Effect of Orifice Induced Hydrodynamic Cavitation on the Properties of Waste Activated Sludge. KSCE J. Civ. Eng. 2024, 28, 1151–1161. [Google Scholar] [CrossRef]
- Qi, X.; Hu, Y.; Chen, Y.; Zhang, J.; Fang, D.; Wang, J.; Fang, D.; Jin, T. Preparation of water-soluble cadmium sulfide quantum dots with narrow small-size distribution by controlling hydrodynamic cavitation device parameters. Powder Technol. 2024, 440, 119755. [Google Scholar] [CrossRef]
- Yu, J.; Xie, S.; Yang, D. The changes induced by hydrodynamic cavitation treatment in wheat gliadin and celiac-toxic peptides. J. Food Sci. Technol. 2024, 61, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.; Yu, H.; Wang, D.; Fan, L. Jet cavitation-enhanced hydration method for the preparation of magnesium hydroxide. Chem. Eng. Process. 2024, 205, 110003. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Li, G.; Dong, B.; Chen, L. Effect of ultrasonic intensification on synthesis of nano-sized particles with an impinging jet reactor. Powder Technol. 2019, 354, 218–230. [Google Scholar] [CrossRef]
- Ma, Q.L.; Xiong, R.; Zhai, B.; Huang, Y.M. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 324, 842–848. [Google Scholar] [CrossRef]
- Tian, W.; Ye, H.; Tang, R.; Man, R. Preparation of active zinc oxide by carbon dioxide method. Inorg. Chem. Ind. 2006, 38, 42–44. [Google Scholar]
- Yang, H.; Wang, D.; Yu, H.; Yang, Y.; Jiang, J. Experimental study on hydrodynamic cavitation⁃enhanced carbothermic reduction process for production of magnesium carbonate hydromagnesite. Inorg. Chem. Ind. 2024, 56, 74–79. [Google Scholar] [CrossRef]
- Moghaddam, J.; Ghaffari, S.B.; Sarraf-Mamoory, R.; Mollaesmail, S. The Study on the Crystallization Conditions of Zn5(OH)6(CO3)2 and its Effect on Precipitation of ZnO Nanoparticles from Purified Zinc Ammoniacal Solution. Inorg. Nano-Met. Chem. 2014, 44, 895–901. [Google Scholar] [CrossRef]
- Amromin, E.L. A new concept of diminishing cavitation inception number for hydrofoils. Ocean Eng. 2023, 283, 115068. [Google Scholar] [CrossRef]
- Soyama, H. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number. Ultrason. Sonochem. 2021, 71, 105389. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhu, X.; He, Y.; Song, T.; Hu, W. Surface strengthening and grain refinement of AZ31B magnesium alloy by ultrasonic cavitation modification. Chin. J. Aeronaut. 2021, 34, 508–517. [Google Scholar] [CrossRef]
- Rao, T.B. Microstructural, mechanical, and wear properties characterization and strengthening mechanisms of Al7075/SiCnp composites processed through ultrasonic cavitation assisted stir-casting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 805, 140553. [Google Scholar] [CrossRef]
- Krella, A.K. Degradation of AlMg2 aluminium alloy caused by cavitation—An effect of cavitation intensity. Mater. Charact. 2017, 130, 219–229. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Wang, D.; Chu, F.; Shao, L. Numerical simulation analysis of influence of jet position on mixing effect of carbonization reactorr. Inorg. Chem. Ind. 2023, 55, 109–114. [Google Scholar] [CrossRef]
- Dobrydnev, S.V.; Molodtsova, M.Y.; Kizim, N.F. Synthesis and study of basic zinc carbonate. Russ. J. Inorg. Chem. 2014, 59, 798–800. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, B.; Wang, L.; Guo, C.; Wang, Q. Sustainable and high-quality synthesis of carbon nanospheres with excellent dispersibility via synergistic external pressure- and PSSMA-assisted hydrothermal carbonization. Adv. Powder Technol. Int. J. Soc. Powder Technol. Jpn. 2021, 32, 2449–2456. [Google Scholar] [CrossRef]
- Liang, X.; Ma, Y.; Li, M.; Xing, Z.; Bai, L. Effect of External Force on Properties of Products Prepared from Hydration of MgO. Nonferrous Met. Eng. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Dzikunu, P.; Arthur, E.K.; Gikunoo, E.; Mensah-Darkwa, K.; Akinwamide, S.O.; Vilaça, P. Optimization of process parameters and kinetics of fluoride extraction from spent potlining using response surface methodology. J. Environ. Manag. 2024, 367, 121896. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Ma, Y.; Wu, S.; Gong, J. Optimization of green spherical agglomeration process based on response surface methodology for preparation of high-performance spherical particles. Int. J. Pharm. 2024, 662, 124515. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Geng, M.; Wo, X.; Shi, L.; Zhai, Y.; Ji, P. Development and conceptual design of a sewage Sludge-to-Fuel hybrid Process: Prediction and optimization under analysis of variance and response surface model. Energy Conv. Manag. 2024, 306, 118143. [Google Scholar] [CrossRef]
- Arjun, S.; Krishna, A.B.; Vamadevan, R.; Babu, J.S. Morphological, structural and electronic properties of zinc oxide nano structures deposited on ZnO substrate layer—A theoretical perspective. Mater. Today Commun. 2024, 39, 109231. [Google Scholar] [CrossRef]
- Priyanka, M.; Reddy, G.S.; Kumar Reddy, T.R.; Naveen, C.S.; Kumar, C.N.S.; Lodhe, M.; Kodli, B.K.; Ramesh, C.S. Synthesis and characterization of Y and Mn -doped ZnO nanoparticles: Structural, optical, morphological, and gas sensing investigations. Physica. B Condens. Matter 2024, 687, 416109. [Google Scholar] [CrossRef]
- GB/T 19589-2004; Nano-Zinc Oxide. Standardization Administration of China: Beijing, China, 2004.
- Meshina, K.; Tkachenko, D.; Kochnev, N.; Lunkov, S.; Panchuk, V.; Kirsanov, D.; Bobrysheva, N.; Osmolowsky, M.; Voznesenskiy, M.; Osmolovskaya, O. Understanding the role of ZnO nanosheet surface in photocatalytic dye degradation: The key to effective wastewater treatment. Ceram. Int. 2024, 50, 35103–35114. [Google Scholar] [CrossRef]
- Decremps, F.; Pellicer-Porres, J.; Saitta, A.M.M.; Chervin, J.; Polian, A. High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 092101. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- HG/T2572-2020; Active Zinc Oxide. Standardization Administration of China: Beijing, China, 2020.
- Tong, Z.; Li, Y.; Yang, G.; Kang, L. Thermodynamic analysis on preparation of zinc oxide precursor by carbonation method and characterization of its products. Inorg. Chem. Ind. 2010, 42, 35–38. [Google Scholar] [CrossRef]
Chemical Constituents | ZnO | PbO | CdO | MnO | CuO | Hydrotrope |
---|---|---|---|---|---|---|
Content (%) | 99.5 | 0.0005 | 0.0005 | 0.001 | 0.002 | 0.10 |
Factor | Standard | ||
---|---|---|---|
−1 | 0 | 1 | |
Solid–liquid ratio (%) | 4 | 5 | 6 |
Cavitation number (σ) | 0.30 | 0.37 | 0.44 |
Different exit positions (H) | 250 | 300 | 350 |
Run | Solid–Liquid Ratio (%) | Cavitation Number (σ) | Different Exit Positions (mm) | BET (m2/g) | Φ (%) |
---|---|---|---|---|---|
1 | 5 | 0.3 | 250 | 59.917 | 92.25 |
2 | 6 | 0.44 | 300 | 59.248 | 90.34 |
3 | 5 | 0.44 | 250 | 59.426 | 89.36 |
4 | 4 | 0.37 | 350 | 60.146 | 91.42 |
5 | 5 | 0.37 | 300 | 63.621 | 94.87 |
6 | 5 | 0.3 | 350 | 60.385 | 89.17 |
7 | 5 | 0.37 | 300 | 63.579 | 94.62 |
8 | 5 | 0.37 | 300 | 62.812 | 95.12 |
9 | 5 | 0.44 | 350 | 60.746 | 90.24 |
10 | 4 | 0.3 | 300 | 59.469 | 91.74 |
11 | 5 | 0.37 | 300 | 62.346 | 94.59 |
12 | 4 | 0.37 | 250 | 60.882 | 89.25 |
13 | 4 | 0.44 | 300 | 60.995 | 89.96 |
14 | 6 | 0.37 | 350 | 61.754 | 89.74 |
15 | 5 | 0.37 | 300 | 63.583 | 93.84 |
16 | 6 | 0.3 | 300 | 60.462 | 91.15 |
17 | 6 | 0.37 | 250 | 59.256 | 92.56 |
Source | df | BET | Φ | ||||
---|---|---|---|---|---|---|---|
Sum of Squares | F | p | Sum of Squares | F | p | ||
Model | 9 | 37.84 | 20.45 | 0.0003 | 71.54 | 32.37 | <0.0001 |
A—Solid–liquid ratio | 1 | 0.0745 | 0.3624 | 0.5662 | 0.2521 | 1.03 | 0.3447 |
B—Cavitation number | 1 | 0.0041 | 0.0201 | 0.8911 | 2.43 | 9.90 | 0.0162 |
C—Different jet positions | 1 | 1.58 | 7.66 | 0.0278 | 1.02 | 4.14 | 0.0815 |
AB | 1 | 1.88 | 9.13 | 0.0193 | 0.2352 | 0.9580 | 0.3603 |
AC | 1 | 2.61 | 12.72 | 0.0091 | 6.23 | 25.35 | 0.0015 |
BC | 1 | 0.1815 | 0.8828 | 0.3787 | 3.92 | 15.97 | 0.0052 |
A2 | 1 | 7.98 | 38.83 | 0.0004 | 11.62 | 47.34 | 0.0002 |
B2 | 1 | 13.16 | 64.01 | <0.0001 | 19.45 | 79.20 | <0.0001 |
C2 | 1 | 7.14 | 34.71 | 0.0006 | 20.45 | 83.30 | <0.0001 |
Resiudal | 7 | 1.44 | 1.72 | ||||
Lack of Fit | 3 | 0.0922 | 0.0913 | 0.9610 | 0.7976 | 1.15 | 0.4297 |
R2 | 0.9634 | 0.9765 | |||||
Adjusted R2 | 0.9163 | 0.9464 |
Actual Test Condition | Repeated Trials | Bet (m2/g) | Ratio of Coalification (%) |
---|---|---|---|
Response time (120 min) | 1 | 62.684 | 94.52 |
Reaction temperature (80 °C) | 2 | 61.851 | 93.68 |
Solid–liquid ratio (5.011:100) | 3 | 62.732 | 93.5 |
Calcination temperature (500 °C) | 4 | 62.556 | 93.79 |
Incident angle/Diameter (60°) | 5 | 62.342 | 94.3 |
Cavitation number (0.366 ± 0.03) | 6 | 61.742 | 94.11 |
Different jet positions (301.13) | 7 | 62.733 | 93.66 |
Average value | 62.377 | 93.937 |
Parameters | Product | Traditional Mechanical Mixing Products [60] | HG/T2572-2020 | ||
---|---|---|---|---|---|
Top Quality Goods | Qualified Product | ||||
ZnO percentage content, % | 97~98 | 95~98 | - | 95~98 | 95~98 |
H2O, % | 0.2 | ≤0.7 | - | ≤0.7 | ≤0.7 |
Grain size, nm | 25~35 | 50~80 | ≤50 nm | ≤100 | ≤100 |
Product appearance | White | White or Faint yellow | White | White | White |
Bulk density, g/mL | 0.28~0.30 | 0.36~0.40 | - | ≤0.35 | ≤0.40 |
Specific surface area, m2/g | 62.377 | 38.46~47.75 | 49.89 | ≥45 | ≥35 |
Loss on ignition, % | 1.6 | - | - | 1~4 | 1~4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Yu, H.; Wang, D.; Chen, G.; Fan, L.; Yang, H. Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization. Processes 2024, 12, 2601. https://doi.org/10.3390/pr12112601
Guo J, Yu H, Wang D, Chen G, Fan L, Yang H. Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization. Processes. 2024; 12(11):2601. https://doi.org/10.3390/pr12112601
Chicago/Turabian StyleGuo, Jinyuan, Honglei Yu, Dexi Wang, Gong Chen, Lin Fan, and Hanshuo Yang. 2024. "Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization" Processes 12, no. 11: 2601. https://doi.org/10.3390/pr12112601
APA StyleGuo, J., Yu, H., Wang, D., Chen, G., Fan, L., & Yang, H. (2024). Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization. Processes, 12(11), 2601. https://doi.org/10.3390/pr12112601