Personal Wearable Thermal and Moisture Management Clothing: A Review on Its Recent Trends and Performance Evaluation Methods
<p>Association between work capacity and wet bulb temperature for different work intensities.</p> "> Figure 2
<p>Personal thermal and moisture management [<a href="#B5-processes-11-03063" class="html-bibr">5</a>].</p> "> Figure 3
<p>Thermal transfer mechanism of clothing.</p> "> Figure 4
<p>Moisture transfer mechanism of clothing.</p> "> Figure 5
<p>(<b>a</b>) Duct-type air-cooling clothing [<a href="#B23-processes-11-03063" class="html-bibr">23</a>]; (<b>b</b>) Fan-type hybrid dry ice and air-cooling clothing [<a href="#B25-processes-11-03063" class="html-bibr">25</a>].</p> "> Figure 6
<p>(<b>a</b>) Thermoelectric liquid-cooling clothing [<a href="#B17-processes-11-03063" class="html-bibr">17</a>]; (<b>b</b>) ice liquid-cooling clothing [<a href="#B30-processes-11-03063" class="html-bibr">30</a>].</p> "> Figure 7
<p>Phase-change cooling clothing [<a href="#B3-processes-11-03063" class="html-bibr">3</a>].</p> "> Figure 8
<p>Thermal-radiation cooling clothing [<a href="#B54-processes-11-03063" class="html-bibr">54</a>].</p> "> Figure 9
<p>Hybrid-cooling wearable clothing [<a href="#B66-processes-11-03063" class="html-bibr">66</a>].</p> "> Figure 10
<p>(<b>a</b>) Schematic diagram of evaporative cooling clothing; (<b>b</b>) heat and mass transfer processes involved in evaporative cooling [<a href="#B19-processes-11-03063" class="html-bibr">19</a>].</p> "> Figure 11
<p>Schematic representation of textiles with hierarchical nanofiber networks and Jannus wettability [<a href="#B85-processes-11-03063" class="html-bibr">85</a>].</p> "> Figure 12
<p>Schematic diagram of (<b>a</b>) PCM composite desiccant packages [<a href="#B89-processes-11-03063" class="html-bibr">89</a>] and (<b>b</b>) ACMR for clothing [<a href="#B72-processes-11-03063" class="html-bibr">72</a>].</p> "> Figure 13
<p>Flow diagram of a two−node model of the thermoregulatory system [<a href="#B113-processes-11-03063" class="html-bibr">113</a>].</p> "> Figure 14
<p>Comparison of the model segmentation, and the two-node and multinode models [<a href="#B115-processes-11-03063" class="html-bibr">115</a>].</p> ">
Abstract
:1. Introduction
2. Thermal and Moisture Management Mechanism
2.1. Thermal Transfer Mechanism
2.2. Moisture Transfer Mechanism
3. Classification and Characteristics of Thermal Management Wearable Clothing
3.1. Thermal Convection Wearable Clothing
- (1)
- Air-cooling clothing
- (2)
- Liquid-cooling clothing
3.2. Thermal Transfer Wearable Clothing
3.3. Thermal Radiation Wearable Clothing
3.4. Hybrid-Cooling Wearable Clothing
3.5. Characterization of Thermal Management Wearable Clothing
4. Classification and Characteristics of Moisture Management Wearable Clothing
4.1. Moisture Management Materials
- (1)
- Water vapor regulation
- (2)
- Liquid vapor regulation
4.2. Moisture Management Clothing
5. Performance Evaluation Indicators of Personal Wearable Thermal and Moisture Management Clothing
5.1. Objective Evaluation Methods
5.2. Subjective Evaluation Methods
5.3. Thermal and Moisture Regulation Model
5.3.1. Human Thermoregulation Model
- (1)
- The two-node model
- (2)
- Multinode model
5.3.2. Evaluation of Thermal and Moisture Management Performance
6. Conclusions
- (1)
- Although current cooling methods are effective in regulating the surrounding temperature, condensation can result if the temperature of the cooling medium is below the dew point of the air.
- (2)
- Moisture removal from textiles is strongly influenced by the humidity of the surrounding environment. In addition, when a desiccant is used to absorb water vapor from around the body, the desiccant absorbs the water vapor, releasing latent heat and leading to an increase in body temperature.
- (3)
- Temperature and humidity regulation is a complex coupled process, and there are no generalized performance evaluation methods available to assess the performance of wearable systems in managing temperature and moisture.
- (4)
- Addressing the issues involved requires considering a combination of cooling and dehumidification factors, such as the use of intelligent control systems, which play a vital role in maintaining the delicate balance between effective dehumidification performance and optimal comfort.
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, G.; Wang, F. Firefighters’ Clothing and Equipment: Performance, Protection, and Comfort; CRC Press: Boca Raton, FL, USA, 2019; pp. 217–268. [Google Scholar]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The Direct Impact of Climate Change on Regional Labor Productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, Z.; Ge, B.; Li, J. Experimental Study on a Phase Change Cooling Garment to Improve Thermal Comfort of Factory Workers. Build. Environ. 2023, 227, 109819. [Google Scholar] [CrossRef]
- Wu, G.; Liu, H.; Wu, S.; Liu, Z.; Mi, L.; Gao, L. A Study on the Capacity of a Ventilation Cooling Vest with Pressurized Air in Hot and Humid Environments. Int. J. Ind. Ergon. 2021, 83, 103106. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, Y. Advanced Textiles for Personal Thermal Management and Energy. Joule 2020, 4, 724–742. [Google Scholar] [CrossRef]
- Sajjad, U.; Hamid, K.; Tauseef-ur-Rehman; Sultan, M.; Abbas, N.; Ali, H.M.; Imran, M.; Muneeshwaran, M.; Chang, J.-Y.; Wang, C.C. Personal Thermal Management—A Review on Strategies, Progress, and Prospects. Int. Commun. Heat Mass Transf. 2022, 130, 105739. [Google Scholar] [CrossRef]
- Su, Y.; Tian, M.; Li, J.; Zhang, X.; Zhao, P. Numerical Study of Heat and Moisture Transfer in Thermal Protective Clothing against a Coupled Thermal Hazardous Environment. Int. J. Heat Mass Transf. 2022, 194, 122989. [Google Scholar] [CrossRef]
- Hu, B.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectrics for Medical Applications: Progress, Challenges, and Perspectives. Chem. Eng. J. 2022, 437, 135268. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Wang, X.; Jiang, Y.; Li, J.; Xu, W.; Zhu, B.; Zhu, J. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Small Methods 2022, 6, 2101379. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, J.; Zhang, L.; Zhang, J.; Jiang, L. Effect of Temperature and Clothing Thermal Resistance on Human Sweat at Low Activity Levels. Build. Environ. 2020, 183, 107117. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Song, G.; Li, R.; Raj, U. Effects of clothing size and air ventilation rate on cooling performance of air ventlaiton clothing in a warm codnition. Int. J. Occup. Saf. Ergon. 2022, 28, 354–363. [Google Scholar] [CrossRef]
- Kim, H.A. Moisture Vapor Permeability and Thermal Wear Comfort of Ecofriendly Fiber-Embedded Woven Fabrics for High-Performance Clothing. Materials 2021, 14, 6205. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Deaton, A.S.; Fang, X.; Watson, K.; DenHartog, E.A.; Barker, R. Effects of Environmental Temperature and Humidity on Evaporative Heat Loss through Firefighter Suit Materials Made with Semi-Permeable and Microporous Moisture Barriers. Text. Res. J. 2022, 92, 219–231. [Google Scholar] [CrossRef]
- Wang, F.; Pang, D.; Liu, X.; Liu, M.; Du, W.; Zhang, Y.; Cheng, X. Progress in Application of Phase-Change Materials to Cooling Clothing. J. Energy Storage 2023, 60, 106606. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, F.; Xu, P.; Yang, B. On the Use of a Novel Nanoporous Polyethylene (nanoPE) Passive Cooling Material for Personal Thermal Comfort Management under Uniform Indoor Environments. Build. Environ. 2018, 145, 85–95. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Lin, H.; Su, Y.; Wei, G.; Xu, Z. Effect of Phase Change Cooling Vest on Related Thermal Regulation Factors in Moderately Hot Environments. Build. Environ. 2023, 242, 110566. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Wang, Q.; Xu, Y.; Hu, P.; Zhang, X. Performance investigation of a portable liquid cooling garment using thermoelectric cooling. Appl. Therm. Eng. 2022, 214, 118830. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, D.; Wang, F.; Yang, R. A Novel Thermal Comfort and Energy Saving Evaluation Model for Radiative Cooling and Heating Textiles. Energy Build. 2022, 258, 111842. [Google Scholar] [CrossRef]
- Rykaczewski, K. Rational Design of Sun and Wind Shaded Evaporative Cooling Vests for Enhanced Personal Cooling in Hot and Dry Climates. Appl. Therm. Eng. 2020, 171, 115122. [Google Scholar] [CrossRef]
- Choudhary, B.; Udayraj; Wang, F.; Ke, Y.; Yang, J. Development and experimental validation of a 3D numerical mdel based on CFD of the human torso wearing air ventilation clothing. Int. J. Heat Mass Transf. 2020, 147, 118973. [Google Scholar]
- Wang, F.; Song, W. An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwaves. J. Therm. Biol. 2017, 70, 37–44. [Google Scholar] [CrossRef]
- Wan, X.; Wang, F.; Udayraj. Numerical Analysis of Cooling Effect of Hybrid Cooling Clothing Incorporated with Phase Change Material (PCM) Packs and Air Ventilation Fans. Int. J. Heat Mass Transf. 2018, 126, 636–648. [Google Scholar] [CrossRef]
- Al Sayed, C.; Vinches, L.; Dupuy, O.; Douzi, W.; Dugue, B.; Hallé, S. Air/CO2 Cooling Garment: Description and Benefits of Use for Subjects Exposed to a Hot and Humid Climate during Physical Activities. Int. J. Min. Sci. Technol. 2019, 29, 899–903. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, C.; Wang, F.; Kuklane, K.; Holmér, I.; Li, J. A Study on Local Cooling of Garments with Ventilation Fans and Openings Placed at Different Torso Sites. Int. J. Ind. Ergon. 2013, 43, 232–237. [Google Scholar] [CrossRef]
- Wang, F.; Chow, C.S.W.; Zheng, Q.; Ke, Y.; Yang, B.; Zheng, X.; Noor, N.; Zhang, Q.; Zhang, C.; Zhou, H. On the Use of Personal Cooling Suits to Mitigate Heat Strain of Mascot Actors in a Hot and Humid Environment. Energy Build. 2019, 205, 109561. [Google Scholar] [CrossRef]
- Peng, Y.; Li, W.; Liu, B.; Jin, W.; Schaadt, J.; Tang, J.; Zhou, G.; Wang, G.; Zhou, J.; Zhang, C.; et al. Integrated Cooling (i-Cool) Textile of Heat Conduction and Sweat Transportation for Personal Perspiration Management. Nat. Commun. 2021, 12, 6122. [Google Scholar] [CrossRef]
- Ernst, T.C.; Garimella, S. Demonstration of a Wearable Cooling System for Elevated Ambient Temperature Duty Personnel. Appl. Therm. Eng. 2013, 60, 316–324. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Huang, Y.; Chen, W. Effects of Liquid Cooling Garment on Physiological and Psychological Strain of Firefighter in Hot and Warm Environments. J. Therm. Biol. 2023, 112, 103487. [Google Scholar] [CrossRef]
- Bartkowiak, G.; Dabrowska, A.; Marszalek, A. Assessment of an Active Liquid Cooling Garment Intended for Use in a Hot Environment. Appl. Ergon. 2016, 58, 182–189. [Google Scholar] [CrossRef]
- Guo, T.; Shang, B.; Duan, B.; Luo, X. Design and Testing of a Liquid Cooled Garment for Hot Environments. J. Therm. Biol. 2015, 49–50, 47–54. [Google Scholar] [CrossRef]
- Chen, W.Y.; Shi, X.L.; Zou, J.; Chen, Z.G. Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization. Mater. Sci. Eng. R Rep. 2022, 151, 100700. [Google Scholar] [CrossRef]
- Jeong, E.S. A New Approach to Optimize Thermoelectric Cooling Modules. Cryogenics 2014, 59, 38–43. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Wang, J.; Zhang, M.; Jia, M.; Wang, Q. Man-Portable Cooling Garment with Cold Liquid Circulation Based on Thermoelectric Refrigeration. Appl. Therm. Eng. 2022, 200, 117730. [Google Scholar] [CrossRef]
- Shu, W.; Wang, J.; Zhang, X.; Luo, X. A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort. In Proceedings of the ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Anaheim, CA, USA, 7–9 October 2019; Volume 12. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Wang, Q.; Yuan, T.; Xu, Y. Research on Refrigerant Optimization and Characteristic Parameters Based on Thermoelectric Refrigeration Cooling Garment. Appl. Therm. Eng. 2022, 212, 118606. [Google Scholar] [CrossRef]
- Rehman, T.-; Ali, H.M. Experimental Study on the Thermal Behavior of RT-35HC Paraffin within Copper and Iron-Nickel Open Cell Foams: Energy Storage for Thermal Management of Electronics. Int. J. Heat Mass Transf. 2020, 146, 118852. [Google Scholar] [CrossRef]
- Tauseef-ur-Rehman; Ali, H.M.; Janjua, M.M.; Sajjad, U.; Yan, W.M. A Critical Review on Heat Transfer Augmentation of Phase Change Materials Embedded with Porous Materials/Foams. Int. J. Heat Mass Transf. 2019, 135, 649–673. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent Developments in Phase Change Materials for Energy Storage Applications: A Review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, Z.; Ghafoor, A. A Review of Performance Enhancement of PCM Based Latent Heat Storage System within the Context of Materials, Thermal Stability and Compatibility. Energy Convers. Manag. 2016, 115, 132–158. [Google Scholar] [CrossRef]
- Butts, C.L.; Torretta, M.L.; Smith, C.R.; Petway, A.J.; McDermott, B.P. Effects of a Phase Change Cooling Garment during Exercise in the Heat. Eur. J. Sport Sci. 2017, 17, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Cao, T.; Muehlbauer, J.; Hwang, Y.; Radermacher, R. Experimental Study of a Personal Cooling System Integrated with Phase Change Material. Appl. Therm. Eng. 2020, 170, 115026. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, D.; Chen, L.; Cao, X.; Li, X.; Qu, Y. Preparation and Thermal Properties Analysis of Fatty Acids/1-Hexadecanol Binary Eutectic Phase Change Materials Reinforced with TiO2 Particles. J Energy Storage 2022, 51, 104546. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.; Gao, H.; Wang, X.; Ma, B. Effects of Porous Silicon Carbide Supports Prepared from Pyrolyzed Precursors on the Thermal Conductivity and Energy Storage Properties of Paraffin-Based Composite Phase Change Materials. J. Energy Storage 2022, 56, 106046. [Google Scholar] [CrossRef]
- Chen, K.; Guo, L.; Wang, H. A Review on Thermal Application of Metal Foam. Sci. China Technol. Sci. 2020, 63, 2469–2490. [Google Scholar] [CrossRef]
- Ma, F.; Liu, L.; Ma, L.; Zhang, Q.; Li, J.; Jing, M.; Tan, W. Enhanced Thermal Energy Storage Performance of Hydrous Salt Phase Change Material via Defective Graphene. J. Energy Storage 2022, 48, 104064. [Google Scholar] [CrossRef]
- Ayaz, H.; Chinnasamy, V.; Jeon, Y.; Cho, H. Thermo-Physical Studies and Corrosion Analysis of Caprylic Acid–Cetyl Alcohol Binary Mixture as Novel Phase Change Material for Refrigeration Systems. Energy Rep. 2022, 8, 7143–7153. [Google Scholar] [CrossRef]
- Tesař, V.; Kordík, J. Energy Storage in Macro-Capsules for Thermal Comfort Garments. J. Energy Storage 2019, 25, 100842. [Google Scholar] [CrossRef]
- Tesař, V.; Kordík, J. Melting N-Eicosane in Scaled-up Model of Capsule for Use in Hot Climate Thermal-Comfort Garments. EPJ Web Conf. 2019, 213, 02086. [Google Scholar] [CrossRef]
- Butts, C.L.; Smith, C.R.; Ganio, M.S.; McDermott, B.P. Physiological and Perceptual Effects of a Cooling Garment during Simulated Industrial Work in the Heat. Appl. Ergon. 2017, 59, 442–448. [Google Scholar] [CrossRef]
- Sanchez-Marin, F.J.; Calixto-Carrera, S.; Villaseñor-Mora, C. Novel Approach to Assess the Emissivity of the Human Skin. JBO 2009, 14, 024006. [Google Scholar] [CrossRef]
- Tong, J.K.; Huang, X.; Boriskina, S.V.; Loomis, J.; Xu, Y.; Chen, G. Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management. ACS Photonics 2015, 2, 769–778. [Google Scholar] [CrossRef]
- Hardy, J.D.; DuBois, E.F. Regulation of Heat Loss from the Human Body. Proc. Natl. Acad. Sci. USA 1937, 23, 624–631. [Google Scholar] [CrossRef]
- Cai, L.; Song, A.Y.; Li, W.; Hsu, P.-C.; Lin, D.; Catrysse, P.B.; Liu, Y.; Peng, Y.; Chen, J.; Wang, H.; et al. Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. Adv. Mater. 2018, 30, 1802152. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Xu, Q.; Wang, H.; Pan, H.; Zhao, D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS Nano 2023, 17, 18308–18317. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.I.; Lin, K.; Sun, F.; Chen, S.; Pan, A.; Lee, H.H.; Kan, C.-W.; Lin, C.S.K.; Tso, C.Y. Radiative Cooling Nanofabric for Personal Thermal Management. ACS Appl. Mater. Interfaces 2022, 14, 23577–23587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Feng, Q. Recent Advances in Textile Materials for Personal Radiative Thermal Management in Indoor and Outdoor Environments. Int. J. Therm. Sci. 2021, 165, 106899. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Q.; Song, Y.; Zhu, B.; Zhu, J. Fundamentals, Materials, and Applications for Daytime Radiative Cooling. Adv. Mater. Technol. 2020, 5, 1901007. [Google Scholar] [CrossRef]
- Lin, K.T.; Han, J.; Li, K.; Guo, C.; Lin, H.; Jia, B. Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond. Nano Energy 2021, 80, 105517. [Google Scholar] [CrossRef]
- Hsu, P.C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative Human Body Cooling by Nanoporous Polyethylene Textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, J.; Song, A.Y.; Catrysse, P.B.; Hsu, P.-C.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D.S.; et al. Nanoporous Polyethylene Microfibres for Large-Scale Radiative Cooling Fabric. Nat. Sustain. 2018, 1, 105–112. [Google Scholar] [CrossRef]
- Hsu, P.C.; Liu, C.; Song, A.Y.; Zhang, Z.; Peng, Y.; Xie, J.; Liu, K.; Wu, C.L.; Catrysse, P.B.; Cai, L.; et al. A Dual-Mode Textile for Human Body Radiative Heating and Cooling. Sci. Adv. 2017, 3, e1700895. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Chen, Z.; Fan, S. Photonic Thermal Management of Coloured Objects. Nat. Commun. 2018, 9, 4240. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gao, Y.; Di, X.; Luo, H. Cotton Modified with Silver-Nanowires/Polydopamine for a Wearable Thermal Management Device. RSC Adv. 2016, 6, 67771–67777. [Google Scholar] [CrossRef]
- Wei, W.; Wu, B.; Guo, Y.; Hu, Y.; Liao, Y.; Wu, C.; Zhang, Q.; Li, Y.; Chen, J.; Hou, C.; et al. A Multimodal Cooling Garment for Personal Thermal Comfort Management. Appl. Energy 2023, 352, 121973. [Google Scholar] [CrossRef]
- Xu, P.; Kang, Z.; Wang, F.; Udayraj. A Numerical Analysis of the Cooling Performance of a Hybrid Personal Cooling System (HPCS): Effects of Ambient Temperature and Relative Humidity. Int. J. Environ. Res. Public Health 2020, 17, 4995. [Google Scholar] [CrossRef]
- Ni, X.; Yao, T.; Zhang, Y.; Zhao, Y.; Hu, Q.; Chan, A.P.C. Experimental Study on the Efficacy of a Novel Personal Cooling Vest Incorporated with Phase Change Materials and Fans. Materials 2020, 13, 1801. [Google Scholar] [CrossRef]
- Sajawal, M.; Rehman, T.; Ali, H.M.; Sajjad, U.; Raza, A.; Bhatti, M.S. Experimental Thermal Performance Analysis of Finned Tube-Phase Change Material Based Double Pass Solar Air Heater. Case Stud. Therm. Eng. 2019, 15, 100543. [Google Scholar] [CrossRef]
- Dhumane, R.; Qiao, Y.; Ling, J.; Muehlbauer, J.; Aute, V.; Hwang, Y.; Radermacher, R. Improving System Performance of a Personal Conditioning System Integrated with Thermal Storage. Appl. Therm. Eng. 2019, 147, 40–51. [Google Scholar] [CrossRef]
- Gharbi, S.; Harmand, S.; Jabrallah, S.B. Experimental Study of the Cooling Performance of Phase Change Material with Discrete Heat Sources—Continuous and Intermittent Regimes. Appl. Therm. Eng. 2017, 111, 103–111. [Google Scholar] [CrossRef]
- Kang, Z.; Udayraj; Wan, X.; Wang, F. A New Hybrid Personal Cooling System (HPCS) Incorporating Insulation Pads for Thermal Comfort Management: Experimental Validation and Parametric Study. Build. Environ. 2018, 145, 276–289. [Google Scholar] [CrossRef]
- Lou, L.; Zhou, Y.; Yan, Y.; Hong, Y.; Fan, J. Wearable Cooling and Dehumidifying System for Personal Protective Equipment (PPE). Energy Build. 2022, 276, 112510. [Google Scholar] [CrossRef]
- Ge, F.; Wang, C. Exergy Analysis of Dehumidification Systems: A Comparison between the Condensing Dehumidification and the Desiccant Wheel Dehumidification. Energy Convers. Manag. 2020, 224, 113343. [Google Scholar] [CrossRef]
- Lou, L.; Chen, K.; Fan, J. Advanced Materials for Personal Thermal and Moisture Management of Health Care Workers Wearing PPE. Mater. Sci. Eng. R Rep. 2021, 146, 100639. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, X.; Wang, S. Development processes and property measurements of moisture absorption and quick dry fabrics. Fibres Text. East. Eur. 2009, 17, 46–49. [Google Scholar]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M.; et al. Hierarchical-Morphology Metafabric for Scalable Passive Daytime Radiative Cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Rother, M.; Barmettler, J.; Reichmuth, A.; Araujo, J.V.; Rytka, C.; Glaied, O.; Pieles, U.; Bruns, N. Self-Sealing and Puncture Resistant Breathable Membranes for Water-Evaporation Applications. Adv. Mater. 2015, 27, 6620–6624. [Google Scholar] [CrossRef]
- Nayak, R.; Kanesalingam, S.; Houshyar, S.; Wang, L.; Padhye, R.; Vijayan, A. Evaluation of Thermal, Moisture Management and Sensorial Comfort Properties of Superabsorbent Polyacrylate Fabrics for the Next-to-Skin Layer in Firefighters’ Protective Clothing. Text. Res. J. 2018, 88, 1077–1088. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Wang, L.; Shanks, R.A.; Ding, J. Polyurethane–Superabsorbent Polymer-Coated Cotton Fabric for Thermophysiological Wear Comfort. J. Mater. Sci. 2019, 54, 9267–9281. [Google Scholar] [CrossRef]
- Yang, Y.; Rana, D.; Lan, C.Q.; Matsuura, T. Development of Membrane-Based Desiccant Fiber for Vacuum Desiccant Cooling. ACS Appl. Mater. Interfaces 2016, 8, 15778–15787. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B. All-Fiber Structured Electronic Skin with High Elasticity and Breathability. Adv. Funct. Mater. 2020, 30, 1908411. [Google Scholar] [CrossRef]
- Guan, M.; Li, J. Garment Size Effect of Thermal Protective Clothing on Global and Local Evaporative Cooling of Walking Manikin in a Hot Environment. Int. J. Biometeorol. 2020, 64, 485–499. [Google Scholar] [CrossRef]
- Wang, F.; Annaheim, S.; Morrissey, M.; Rossi, R.M. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand. J. Med. Sci. Sports 2013, 24, e129–e139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Fan, J.T.; Sarkar, M.K. Biomimetics of Branching Structure in Warp Knitted Fabrics to Improve Water Transport Properties for Comfort. Text. Res. J. 2012, 82, 1131–1142. [Google Scholar] [CrossRef]
- Miao, D.; Cheng, N.; Wang, X.; Yu, J.; Ding, B. Sandwich-Structured Textiles with Hierarchically Nanofibrous Network and Janus Wettability for Outdoor Personal Thermal and Moisture Management. Chem. Eng. J. 2022, 450, 138012. [Google Scholar] [CrossRef]
- Guan, M.; Annaheim, S.; Li, J.; Camenzind, M.; Psikuta, A.; Rossi, R.M. Apparent Evaporative Cooling Efficiency in Clothing with Continuous Perspiration: A Sweating Manikin Study. Int. J. Therm. Sci. 2019, 137, 446–455. [Google Scholar] [CrossRef]
- Wang, H.; Hu, S. Experimental Study on Thermal Sensation of People in Moderate Activities. Build. Environ. 2016, 100, 127–134. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, C.; Wang, F.; Kuklane, K.; Holmér, I.; Li, J. The Torso Cooling of Vests Incorporated with Phase Change Materials: A Sweat Evaporation Perspective. Text. Res. J. 2013, 83, 418–425. [Google Scholar] [CrossRef]
- Itani, M.; Ghaddar, N.; Ghali, K. Innovative PCM-Desiccant Packet to Provide Dry Microclimate and Improve Performance of Cooling Vest in Hot Environment. Energy Convers. Manag. 2017, 140, 218–227. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Zhang, H.; Arens, E.; Filingeri, D.; Jin, L.; Ghahramani, A.; Chen, W.; He, Y.; Si, B. High-Density Thermal Sensitivity Maps of the Human Body. Build. Environ. 2020, 167, 106435. [Google Scholar] [CrossRef]
- Liu, W.; Lian, Z.; Deng, Q.; Liu, Y. Evaluation of Calculation Methods of Mean Skin Temperature for Use in Thermal Comfort Study. Build. Environ. 2011, 46, 478–488. [Google Scholar] [CrossRef]
- Chen, Y.; Su, Y.; Liu, G.; Zhao, P.; Tian, M.; Li, J. Design and Performance Evaluation of a Firefighting Protective Suit with an Incorporated Liquid-Cooled System. Int. J. Occup. Saf. Ergon. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Hou, J.; Yang, Z.; Xu, P.; Huang, G. Design and Performance Evaluation of Novel Personal Cooling Garment. Appl. Therm. Eng. 2019, 154, 131–139. [Google Scholar] [CrossRef]
- Golbabaei, F.; Heydari, A.; Moradi, G.; Dehghan, H.; Moradi, A.; Habibi, P. The Effect of Cooling Vests on Physiological and Perceptual Responses: A Systematic Review. Int. J. Occup. Saf. Ergon. 2020, 28, 223–255. [Google Scholar] [CrossRef] [PubMed]
- Lapka, P.; Furmanski, P.; Wisniewski, T. Assessment of thermal performance of protective garments: The advanced numerical model. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 1078–1097. [Google Scholar] [CrossRef]
- Rathour, R.; Das, A.; Alagirusamy, R. Study on the Influence of Constructional Parameters on Performance of Outer Layer of Thermal Protective Clothing. J. Text. Inst. 2023, 114, 1336–1346. [Google Scholar] [CrossRef]
- Pearson, S.J.; Highlands, B.; Jones, R.; Matthews, M.J. Comparisons of Core Temperature between a Telemetric Pill and Heart Rate Estimated Core Temperature in Firefighters. Saf. Health Work 2022, 13, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.S. Stress Evaluation by the Physiological Strain Index (PSI). J. Physiol. Pharmacol. 2000, 11, 403–423. [Google Scholar] [CrossRef]
- Udayraj; Talukdar, P.; Das, A.; Alagirusamy, R. Heat and Mass Transfer through Thermal Protective Clothing—A Review. Int. J. Therm. Sci. 2016, 106, 32–56. [Google Scholar] [CrossRef]
- Udayraj; Wang, F. A Three-Dimensional Conjugate Heat Transfer Model for Thermal Protective Clothing. Int. J. Therm. Sci. 2018, 130, 28–46. [Google Scholar] [CrossRef]
- Liu, G.; Liang, S.; Hu, S. Calculation Method of Mean Skin Temperature Weighted by Temperature Sensitivity of Various Parts of Human Body. J. Therm. Biol. 2021, 100, 102995. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Y.S. Measurement of Clothing Thermal Insulation and Moisture Vapour Resistance Using a Novel Perspiring Fabric Thermal Manikin. Meas. Sci. Technol. 2002, 13, 1115. [Google Scholar] [CrossRef]
- Wang, F. Measurements of clothing evaporative resistance using a sweating thermal manikin: An overview. Ind. Health 2017, 55, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Havenith, G.; Mayor, T.S.; Kuklane, K.; Leonard, J.; Młynarcyk, M.; Hodder, S.; Wong, C.; Kishino, J.; Dai, X. Clothing real evaporative resistance determined by means of a sweating thermal manikin: A new round-robin study. In Proceedings of the 10th Internatinal Meeting on Thermal Manikin and Modelling (10i3m), Tampere, Finland, 7–9 September 2014. [Google Scholar]
- Wang, F.; Kuklane, K.; Gao, C.; Holmér, I. Development and validity of a universal empirical equation to predict skin surface temperature on thermal manikins. J. Therm. Biol. 2010, 35, 197–203. [Google Scholar] [CrossRef]
- Wang, F.; Lai, D.; Shi, W.; Fu, M. Effects of fabric thickness and material on apparent ‘wet’ conductive thermal resistance of knitted fabric ‘skin’ on sweating manikins. J. Therm. Biol. 2017, 70, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Takada, S.; Kobayashi, H.; Matsushita, T. Thermal Model of Human Body Fitted with Individual Characteristics of Body Temperature Regulation. Build. Environ. 2009, 44, 463–470. [Google Scholar] [CrossRef]
- Li, F. A 3D Finite Element Thermal Model for Clothed Human Body. JFBI 2013, 6, 149–160. [Google Scholar] [CrossRef]
- Enescu, D. Models and Indicators to Assess Thermal Sensation Under Steady-State and Transient Conditions. Energies 2019, 12, 841. [Google Scholar] [CrossRef]
- Takada, S.; Sakiyama, T.; Matsushita, T. Validity of the Two-Node Model for Predicting Steady-State Skin Temperature. Build. Environ. 2011, 46, 597–604. [Google Scholar] [CrossRef]
- Doherty, T.; Arens, E.A. Evaluation of the Physiological Bases of Thermal Comfort Models; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 1988. [Google Scholar]
- Ooka, R.; Minami, Y.; Sakoi, T.; Tsuzuki, K.; Rijal, H.B. Improvement of Sweating Model in 2-Node Model and Its Application to Thermal Safety for Hot Environments. Build. Environ. 2010, 45, 1565–1573. [Google Scholar] [CrossRef]
- Melnikov, V.; Krzhizhanovskaya, V.V.; Lees, M.H.; Sloot, P.M.A. System Dynamics of Human Body Thermal Regulation in Outdoor Environments. Build. Environ. 2018, 143, 760–769. [Google Scholar] [CrossRef]
- Joshi, A.; Wang, F.; Kang, Z.; Yang, B.; Zhao, D. A three-dimensional thermoregulatory model for predicting human thermophysiological responses in various thermal environments. Build. Environ. 2022, 207, 108506. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Zeiler, W. Thermophysiological Models and Their Applications: A Review. Build. Environ. 2016, 106, 286–300. [Google Scholar] [CrossRef]
- Stolwijk, J.A. Mathematical models of thermal regulation. Ann. N. Y. Acad. Sci. 1980, 335, 98–106. [Google Scholar] [CrossRef]
- Munir, A.; Takada, S.; Matsushita, T. Re-Evaluation of Stolwijk’s 25-Node Human Thermal Model under Thermal-Transient Conditions: Prediction of Skin Temperature in Low-Activity Conditions. Build. Environ. 2009, 44, 1777–1787. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, F.; Udayraj. An advanced three-dimensional thermoregulatory model of the human body: Development and validation. Int. Commun. Heat Mass Transf. 2019, 107, 34–43. [Google Scholar] [CrossRef]
- Ismail, N.; Ghaddar, N.; Ghali, K. Predicting Segmental and Overall Ventilation of Ensembles Using an Integrated Bioheat and Clothed Cylinder Ventilation Models. Text. Res. J. 2014, 84, 2198–2213. [Google Scholar] [CrossRef]
References | Environmental Temperature | Environmental Humidity/% | Liquid Temperature/°C | Liquid Flow Rate/L·min−1 | Cooling Efficiency/W |
---|---|---|---|---|---|
[21] | 30 °C | 40 | - | 3.8 | 300 |
[17] | 39.2 °C | 60 | 16 | 0.9 | 160.43 |
[33] | 30 °C | - | 15.7 | - | 340.4 |
[34] | 45 °C | - | - | 0.54 | 243.2 |
[25] | 34.0 ± 0.5 °C | 78 ± 5 | 5.3 | 0.5 | 169.2 |
[35] | 35 °C | 60 | 22 | - | 210 |
Description | Organic PCMs | Inorganic PCMs | Eutectic Material | ||
---|---|---|---|---|---|
Materials | Fatty acids | Paraffinic | Metals | Hydrated salt | Mixtures |
Melting point | 30~70 °C | 40~70 °C | 20~100 °C | −20~100 °C | −20~100 °C |
Latent heat | 150~250 kJ/kg | 150~250 kJ/kg | 100~500 kJ/kg | 200~400 kJ/kg | 100~500 kJ/kg |
Advantages | Good stability, good reusability, well-defined phase-transition point [42] | Good stability, good reusability, adjustable melting point [43] | Good stability, good thermal conductivity, nontoxic and harmless [44] | High latent heat, good reusability, inexpensive [45] | High thermal conductivity, high latent heat, good stability, adjustable melting point [46] |
Drawbacks | Low melting point, low phase-transition temperature range, easily contaminated, toxic, and slightly corrosive | Corrosive to plastic containers. High volume change, volatile, flammable | High melting point, high weight, small phase-transition temperature range, more expensive | Corrosive and slightly toxic. Poor stability, susceptible to moisture, easily crystallized | Heavy weight and high cost |
References | Types | Materials | Results |
---|---|---|---|
[51] | Radiation-cooled, infrared, transparent, visible, opaque fabric | Parallel-aligned polyethylene fibers with a low infrared absorbance | The infrared transmittance of the fiber is 0.972 |
[59] | Radiation-cooled fabrics are opaque, transparent to mid-infrared | Nanoporous polyethylene | It reduces skin temperature by up to 2.7 °C. |
[60] | Radiation-cooled fabrics are opaque, transparent to mid-infrared | Homogeneous and continuous nano-polyethylene | It reduces skin temperature by up to 2.3 °C. |
[61] | Cooling and heating of fabrics by mid-infrared emitted radiation | Polyethylene nanolayer | Maximum core temperature reduction up to 36.59 °C |
[62] | Mid-infrared solar reflective emission cooling textiles | Integrated solar reflectors and thermal emitters | 5 °C cooling in direct sunlight |
[63] | Mid-infrared solar reflective emission radiation heating and cooling of textiles | Photonic structure | Temperature difference of 20 °C for radiant textiles |
[64] | Low and medium infrared-emitting radiant fabrics | Silver nanowire composite coated on cotton | Average reflectivity is 66% higher than conventional fabrics |
Types | Cooling Method | Total Weight | Cooling Temperature | Mean Cooling Power (6 h) | Notice |
---|---|---|---|---|---|
WCDS | Thermoelectric and blowers | 1.2 kg | 26.5∼28.8 °C | 51.7 W | - |
Air-cooling clothing | Ventilating fans | 0.7 kg | 32.5 °C | 9 W | - |
Liquid-cooling clothing | Ice water and water circulation tubing system | 4.3 kg | 11.1 °C | 37.1 W | Condensation water |
Ice-cooling clothing | Ice gel packs | 1.9 kg | 4.2 °C | 25.6 W | Condensation water |
Types | Principle | Dehumidification Effect | Drawback |
---|---|---|---|
Moisture management materials | Surface evaporation | 140–160 g/m2/h [74] | Depending on ambient humidity |
Desiccant-dehumidification clothing | The adsorption capacity of the desiccant | Decrease from 21.23 g/kg to 19.74 g/kg [89] | Dehumidification process is exothermic |
Condensation-dehumidification clothing | Cold-surface condensation | 26.3 g/h [72] | High energy consumption, condensation |
References | The Dummy | Characterization |
---|---|---|
[105] | Tore | Prewetted tight fabric skin applied to a dry thermal manikin |
[102] | Walter | Water-filled manikin with a waterproof but vapor permeable surface |
[104] | Coppelius | Manikin with an inner skin spreading water superficially and an outer vapor-permeable skin |
[106] | Newton | Manikin with a supply of water to a fabric skin by means of sweating outlets distributed over the manikin’s surface |
[104] | ADAM | Manikin with a porous metal surface with superficial sweating |
Scales | Thermal Sensation | Thermal Comfort | Thermal Satisfaction | Thermal Preference | Sweat Feeling | Cold Stimuli Sensation |
---|---|---|---|---|---|---|
+4 | Very hot | Extremely uncomfortable | Very unsatisfied | Very strong cold stimuli sensation | ||
+3 | Hot | Very uncomfortable | Unsatisfied | Much warmer | The very strong feeling of sweating | Strong cold stimuli sensation |
+2 | Warm | Uncomfortable | Slightly unsatisfied | Warmer | The strong feeling of sweating | Medium cold stimuli sensation |
+1 | Slightly warm | Slightly uncomfortable | Satisfied | A little warmer | Slight feeling of sweating | A little cold stimuli sensation |
0 | Neutral | Comfortable | Very satisfied | No change | No feeling of sweating | No cold stimuli sensation |
−1 | Slightly cool | A little cooler | ||||
−2 | Cool | Cooler | ||||
−3 | Cold | Much cooler | ||||
−4 | Very cold |
Model Name | Model Classification | Model Characteristics |
---|---|---|
Human thermoregulation model | Two-node model Multinode model | When there are large temperature differences in the human body, more accurate simulation results can be obtained by using multinode and multiunit models. |
Heat and moisture transfer modeling of clothing | Steady-state model Transient model | Simulate the heat and moisture transfer process of garments to derive the heat and moisture properties of garments. |
Human body–clothing–environment system model | - | The human body–clothing environment as a whole combines a model of human thermoregulation and a model of heat and moisture transfer from clothing. |
Thermal/Moisture Transfer | Thermal/Moisture Transfer | Indexes | Test Equipment |
---|---|---|---|
Human body → environment | Heat transfer | Thermal resistance | Hot plate; thermal torso; thermal manikin |
Moisture transfer | Liquid-water transfer indexes | Moisture management tester | |
Coupled heat and moisture transfer | Evaporative resistance | Sweating hot plate; sweating torso; sweating thermal manikin | |
Environment → human body | Heat transfer | Water vapor transmission | Test dish, balance |
Absorbed thermal energy | Thermal protective performance; tester, radiant protective performance tester |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, J.; Guo, X.; Hu, Y.; Niu, X.; Wang, F. Personal Wearable Thermal and Moisture Management Clothing: A Review on Its Recent Trends and Performance Evaluation Methods. Processes 2023, 11, 3063. https://doi.org/10.3390/pr11113063
Zhou J, Zhao J, Guo X, Hu Y, Niu X, Wang F. Personal Wearable Thermal and Moisture Management Clothing: A Review on Its Recent Trends and Performance Evaluation Methods. Processes. 2023; 11(11):3063. https://doi.org/10.3390/pr11113063
Chicago/Turabian StyleZhou, Junming, Jinming Zhao, Xiaolei Guo, Yuxing Hu, Xiaofeng Niu, and Faming Wang. 2023. "Personal Wearable Thermal and Moisture Management Clothing: A Review on Its Recent Trends and Performance Evaluation Methods" Processes 11, no. 11: 3063. https://doi.org/10.3390/pr11113063
APA StyleZhou, J., Zhao, J., Guo, X., Hu, Y., Niu, X., & Wang, F. (2023). Personal Wearable Thermal and Moisture Management Clothing: A Review on Its Recent Trends and Performance Evaluation Methods. Processes, 11(11), 3063. https://doi.org/10.3390/pr11113063