Research on Fourier Transform Spectral Phase Correction Algorithm Based on CTKB-NCM
<p>The schematic of a Michelson-type time-modulated Fourier Transform Spectrometer.</p> "> Figure 2
<p>A block diagram of the CTKB-NCM phase correction algorithm structure.</p> "> Figure 3
<p>The linear phase error correction process of the CTKB method.</p> "> Figure 4
<p>A flowchart of the Rao algorithm.</p> "> Figure 5
<p>(<b>a</b>) A comparison of the normalized restored spectra after linear phase error correction using the CTKB method and the Mertz method; (<b>b</b>,<b>c</b>) comparisons of the local spectra after linear phase error correction by the two methods; (<b>d</b>) the difference between the normalized restored spectra of the two methods.</p> "> Figure 6
<p>The convergence curve of the objective function of the Rao algorithm.</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) Comparisons of the normalized restored spectra obtained from the SO<sub>2</sub> measurement spectrum after linear phase error correction using the CTKB method, with the instrument phase correction parameters calculated using the least squares method and the Rao algorithm, respectively. (<b>c</b>) A comparison of the normalized spectral reconstruction errors for the two methods mentioned above.</p> "> Figure 8
<p>The phase correction process of the CTKB-NMPRC algorithm.</p> "> Figure 9
<p>(<b>a</b>) Comparison of spectral restoration using CTKB-NCM, Mertz, and Forman Methods. (<b>b</b>,<b>c</b>) Local spectral restoration comparisons. (<b>d</b>) Comparison of restoration spectral errors among three methods.</p> ">
Abstract
:1. Introduction
2. Fourier Transform Spectroscopy Related Knowledge
2.1. Introduction to Fourier Transform Spectroscopy
2.2. Analysis of Phase Error Sources
- Phase errors induced by the dispersion of the beamsplitter crystal and the machining precision of the wedge-shaped substrate of the beamsplitter.
- Phase errors caused by modulation non-uniformity in spectrometers with equal optical path difference sampling. This occurs because the wavenumbers of the reference laser and the incident radiation are not identical, leading to inconsistent phase delays when the detector receives the two signals.
- Phase errors introduced during sampling due to optical misalignment, random initialization states of the electronic system, motor positioning inaccuracies, and non-uniform sampling intervals of the detector. These errors stem from imperfections in the spectrometer’s optical alignment, electronic system, mechanical components, and sampling process.
3. The CTKB-NCM Phase Correction Algorithm
3.1. Algorithm Description
3.2. Linear Phase Error Correction Using the CTKB Method
- Initialization:
- 2.
- Sliding Window:
- 3.
- Energy Operator Calculation:
- 4.
- Cumulative Sum:
- 5.
- Peak Identification:
- 6.
- ZOPD Offset Calculation:
- 7.
- Linear Phase Calculation:
3.3. Instrument Phase Error Correction Using the NCM
3.3.1. Nonlinear Calibration Model (NCM)
3.3.2. Rao Algorithm
4. Simulation Experiments
4.1. Experiment on Linear Phase Correction Using CTKB Method
4.2. Experiment on Instrument PHASE Correction Parameters Calculation Using Rao Algorithm
- Population size: 5
- Number of variables per individual (number of instrument phase coefficients): 3
- Number of iterations: 2000
- Objective function output calculated using Equation (14).
4.3. Experiment on CTKB-NCM Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, T.; Drissen, L.; Prunet, S. Data Reduction and Calibration Accuracy of the Imaging Fourier Transform Spectrometer SITELLE. Mon. Not. Roy. Astron. Soc. 2021, 505, 5514–5529. [Google Scholar] [CrossRef]
- Hu, B. Review of the Development of Interferometric Spectral Imaging Technology (Invited). Acta Photonica Sin. 2022, 51, 0751401. [Google Scholar] [CrossRef]
- Rodriguez-Temporal, D.; Garcia-Canada, J.E.; Candela, A.; Oteo-Iglesias, J.; Serrano-Lobo, J.; Perez-Vazquez, M.; Rodriguez-Sanchez, B.; Cercenado, E. Characterization of an Outbreak Caused by Elizabethkingia Miricola Using Fourier-Transform Infrared (FTIR) Spectroscopy. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 797–803. [Google Scholar] [CrossRef]
- Du, M.; Yang, L.; Luo, X.; Wang, K.; Chang, G. Novel Phosphoric Acid (PA)-Poly(Ether Ketone Sulfone) with Flexible Benzotriazole Side Chains for High-Temperature Proton Exchange Membranes. Polym. J. 2019, 51, 69–75. [Google Scholar] [CrossRef]
- Armaselu, A. New Spectral Applications of the Fourier Transforms in Medicine, Biological and Biomedical Fields; Nikolic, G.S., Cakic, M.D., Cvetkovic, D.J., Eds.; Intech Europe: Rijeka, Croatia, 2017; pp. 235–252. ISBN 978-953-51-2894-6. [Google Scholar]
- Dupont, F.; Grandmont, F.; Solheim, B.; Bourassa, A.; Degenstein, D.; Lloyd, N.; Cooney, R. Spatial Heterodyne Spectrometer for Observation of Water for a Balloon Flight: Overview of the Instrument & Preliminary Flight Data Results. In Proceedings of the Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment (2015), Lake Arrowhead, CA, USA, 1–4 March 2015; paper FW4A.5. Optica Publishing Group: Washington, DC, USA, 2015; p. FW4A.5. [Google Scholar]
- DeForest, C.L.; Qian, J.; Miller, R.E. Composition Determination of Multicomponent Organic Aerosols by On-Line FT-IR. Appl. Spectrosc. 2002, 56, 1429–1435. [Google Scholar] [CrossRef]
- Samokhvalov, A.; McCombs, S. In Situ Time-Dependent Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy of a Powdered Specimen in a Controlled Atmosphere: Monitoring Sorption and Desorption of Water Vapor. Appl. Spectrosc. 2023, 77, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Fulton, T.; Naylor, D.A.; Polehampton, E.T.; Valtchanov, I.; Hopwood, R.; Lu, N.; Baluteau, J.-P.; Mainetti, G.; Pearson, C.; Papageorgiou, A.; et al. The Data Processing Pipeline for the Herschel SPIRE Fourier Transform Spectrometer. Mon. Not. Roy. Astron. Soc. 2016, 458, 1977–1989. [Google Scholar] [CrossRef]
- Ben-David, A.; Ifarraguerri, A. Computation of a Spectrum from a Single-Beam Fourier-Transform Infrared Interferogram. Appl. Opt. AO 2002, 41, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Libert, A.; Urbain, X.; Fabre, B.; Daman, M.; Lauzin, C. Design and Characteristics of a Cavity-Enhanced Fourier-Transform Spectrometer Based on a Supercontinuum Source. Rev. Sci. Instrum. 2020, 91, 113104. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Shen, H.; Meng, L.; Ben, C.; Jia, P. A Phase Correction Model for Fourier Transform Spectroscopy. Appl. Sci. 2024, 14, 1838. [Google Scholar] [CrossRef]
- Saggin, B.; Scaccabarozzi, D.; Tarabini, M. Instrumental Phase-Based Method for Fourier Transform Spectrometer Measurements Processing. Appl. Opt. 2011, 50, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Turbide, S.; Smithson, T. Calibration Algorithm for Fourier Transform Spectrometer with Thermal Instabilities. Appl. Opt. 2010, 49, 3411–3417. [Google Scholar] [CrossRef]
- Gao, J.; Liang, Z.; Liang, J.; Wang, W.; Lu, J.; Qin, Y. Spectrum Reconstruction of a Spatially Modulated Fourier Transform Spectrometer Based on Stepped Mirrors. Appl. Spectrosc. 2017, 71, 1348–1356. [Google Scholar] [CrossRef]
- Nagler, P.C.; Fixsen, D.J.; Kogut, A.; Tucker, G.S. Systematic Effects in Polarizing Fourier Transform Spectrometers for Cosmic Microwave Background Observations. Astrophys. J. Suppl. Ser. 2015, 221, 21. [Google Scholar] [CrossRef]
- Kleinert, A.; Trieschmann, O. Phase Determination for a Fourier Transform Infrared Spectrometer in Emission Mode. Appl. Opt. 2007, 46, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Li, Y.S.; Liu, X.B.; Hu, B.L.; Liu, C.F. Detection and Correction of Linear Phase Error for Fourier Transform Spectrometer Using Phase Correction Method. Adv. Mater. Res. 2011, 225–226, 293–296. [Google Scholar] [CrossRef]
- Salzenstein, F.; Montgomery, P.; Boudraa, A.O. Local Frequency and Envelope Estimation by Teager-Kaiser Energy Operators in White-Light Scanning Interferometry. Opt. Express OE 2014, 22, 18325–18334. [Google Scholar] [CrossRef]
- Cexus, J.-C.; Boudraa, A.-O. Link between Cross-Wigner Distribution and Cross-Teager Energy Operator. Electron. Lett. 2004, 40, 778–780. [Google Scholar] [CrossRef]
- Salzenstein, F.; Boudraa, A.O.; Chonavel, T. A New Class of Multi-Dimensional Teager-Kaiser and Higher Order Operators Based on Directional Derivatives. Multidimens. Syst. Signal Process. 2013, 24, 543–572. [Google Scholar] [CrossRef]
- Larkin, K.G. Uniform Estimation of Orientation Using Local and Nonlocal 2-D Energy Operators. Opt. Express OE 2005, 13, 8097–8121. [Google Scholar] [CrossRef] [PubMed]
- Boudraa, A.-O.; Cexus, J.-C.; Abed-Meraim, K. Cross ΨB-Energy Operator-Based Signal Detectiona. J. Acoust. Soc. Am. 2008, 123, 4283–4289. [Google Scholar] [CrossRef]
- Yang, M.; Zou, Y.; Zhang, L.; Han, C. Correction to Nonlinearity in Interferometric Data and Its Effect on Radiometric Calibration. Chin. J. Lasers 2017, 44, 110002. [Google Scholar] [CrossRef]
- Te, Y.; Jeseck, P.; Pepin, I.; Camy-Peyret, C. A Method to Retrieve Blackbody Temperature Errors in the Two Points Radiometric Calibration. Infrared Phys. Technol. 2009, 52, 187–192. [Google Scholar] [CrossRef]
- Rao, R. Rao Algorithms: Three Metaphor-Less Simple Algorithms for Solving Optimization Problems. Int. J. Ind. Eng. Comput. 2020, 11, 107–130. [Google Scholar] [CrossRef]
- Sultan, H.M.; Menesy, A.S.; Korashy, A.; Hassan, M.S.; Hassan, M.H.; Jurado, F.; Kamel, S. Steady-State and Dynamic Characterization of Proton Exchange Membrane Fuel Cell Stack Models Using Chaotic Rao Optimization Algorithm. Sustain. Energy Technol. Assess. 2024, 64, 103673. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Liu, Y.; Chen, L.; Hu, Z.; Wei, P.; Li, Z. A Logistic-Tent Chaotic Mapping Levenberg Marquardt Algorithm for Improving Positioning Accuracy of Grinding Robot. Sci. Rep. 2024, 14, 9649. [Google Scholar] [CrossRef]
- Wei, X.; Zang, H. Construction and Complexity Analysis of New Cubic Chaotic Maps Based on Spectral Entropy Algorithm. J. Intell. Fuzzy Syst. 2019, 37, 4547–4555. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
Phase Correction Method | Maximum Error 1 | Root Mean Square 2 | Time |
---|---|---|---|
CTKB-NCM | 0.0058 | 2.518 s | |
Mertz | 0.0269 | 0.0095 | 2.484 s |
Forman | 0.0492 | 0.0181 | 2.527 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yan, C.; Huo, Z.; Dai, P.; Yao, D. Research on Fourier Transform Spectral Phase Correction Algorithm Based on CTKB-NCM. Photonics 2025, 12, 219. https://doi.org/10.3390/photonics12030219
Wang X, Yan C, Huo Z, Dai P, Yao D. Research on Fourier Transform Spectral Phase Correction Algorithm Based on CTKB-NCM. Photonics. 2025; 12(3):219. https://doi.org/10.3390/photonics12030219
Chicago/Turabian StyleWang, Xiong, Chunhui Yan, Zimin Huo, Pengzhang Dai, and Dong Yao. 2025. "Research on Fourier Transform Spectral Phase Correction Algorithm Based on CTKB-NCM" Photonics 12, no. 3: 219. https://doi.org/10.3390/photonics12030219
APA StyleWang, X., Yan, C., Huo, Z., Dai, P., & Yao, D. (2025). Research on Fourier Transform Spectral Phase Correction Algorithm Based on CTKB-NCM. Photonics, 12(3), 219. https://doi.org/10.3390/photonics12030219