Spatial Multiplexing Holography for Multi-User Visible Light Communication
<p>(<b>a</b>) Scenario of multi-user system in VLC; (<b>b</b>) Sketch of power allocation; (<b>c</b>) Sketch of power coverage; (<b>d</b>) Sketch of OAM secure communication.</p> "> Figure 2
<p>Application of power allocation holography in projection.</p> "> Figure 3
<p>(<b>a</b>) Process of generating SMH for power allocation; (<b>b</b>) Process of generating SMH for power coverage; (<b>c</b>) Process of generating SMH for OAM secure communication.</p> "> Figure 4
<p>Schematic diagram of precise transmission space sampling. (<b>a</b>) Transmission process without pre-control; (<b>b</b>) Transmission process with pre-control.</p> "> Figure 5
<p>(<b>a</b>) Simulation results for power allocation; (<b>b</b>) Convergence line of GA; (<b>c</b>) Simulation results for power coverage under MF method; (<b>d</b>) Simulation results for power coverage under SMH.</p> "> Figure 6
<p>(<b>a</b>) Simulation of optical field at receiver plane under SMH and conventional method; (<b>b</b>) Power trend of user encoded with OAM modes <span class="html-italic">l</span> = 20 under different OAM keys; (<b>c</b>) Simulation results for OAM secret communication.</p> "> Figure 7
<p>Experimental setup. (<b>a</b>) Experiment platform; (<b>b</b>) Signal processing.</p> "> Figure 8
<p>Experimental results for power allocation. (<b>a</b>) Data rate curve with ROP; (<b>b</b>) One frame of 4K video received under MPH and SMH; (<b>c</b>) BER of each row in the first frame; (<b>d</b>) Mean BER of each second of the video; (<b>e</b>) Working point test for User 1; (<b>f</b>) Working point test for User 2; (<b>g</b>) Working point test for User 3.</p> "> Figure 9
<p>Experimental results for power coverage. (<b>a</b>) User 1’s ROP trend with XoY offset; (<b>b</b>) User 2’s ROP trend with XoY offset; (<b>c</b>) User 3’s ROP trend with XoY offset; (<b>d</b>) Coverage area diameter of 3 users under MF and SMH; (<b>e</b>) Data rate trend with XoY offset of three users; (<b>f</b>) CCD recording at User 1’s plate under different methods; (<b>g</b>) CCD recording at User 2’s plate under different methods; (<b>h</b>) CCD recording at User 3’s plate under different methods; (<b>i</b>) MSE and SSIM of recordings under different methods.</p> "> Figure 10
<p>Experimental results for OAM secure communication. (<b>a</b>) ROP of three users with different OAM keys; (<b>b</b>) Data rate of three users with different OAM keys; (<b>c</b>) CCD recording of three users; (<b>d</b>) One frame of a 1080P video received by User 3 under different OAM keys.</p> ">
Abstract
:1. Introduction
2. Design Principle of Spatial Multiplexing Hologram
2.1. Spatial Multiplexing Hologram for Multi-User Power Allocation
2.2. Spatial Multiplexing Hologram for Multi-User Power Coverage
2.3. Spatial Multiplexing Hologram Using OAM for Multi-User Secure Communication
3. Simulation Results
3.1. Simulation Results for Power Allocation
3.2. Simulation Results for Power Coverage
3.3. Simulation Results for OAM Secure Communication
4. Experimental Setup
4.1. Experimental Platform
4.2. Signal Processing
5. Experimental Results
5.1. Experimental Results for Power Allocation
5.2. Experimental Results for Power Coverage
5.3. Experimental Results for OAM Secure Communication
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jovicic, A.; Li, J.; Richardson, T.J. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Haas, H. Visible light communication. In Proceedings of the 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015; pp. 1–72. [Google Scholar]
- Chen, L.; Zhou, X.; Chen, F.; Yang, L.-L.; Chen, R. Carrier phase ranging for indoor positioning with 5G NR signals. J IEEE Internet Things J. 2021, 9, 10908–10919. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Z.; Li, J.; Ge, D.; Chen, Z.; Vellekoop, I.M.; Koonen, A.J. Wide-coverage beam-steered 40-Gbit/s non-line-of-sight optical wireless connectivity for Industry 4.0. J. Light. Technol. 2020, 38, 6801–6806. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, X.; Li, Z.; Shen, C.; Zhang, J.; Shi, J.; Chi, N. Lens-free wavefront shaping method for a diffuse non-line-of-sight link in visible light communication. Chin. Opt. Lett. 2024, 22, 020603. [Google Scholar] [CrossRef]
- Niu, W.; Li, F.; Xu, Z.; Shen, C.; Li, Z.; Shi, J.; Zhang, J.; Chi, N. Wavelength-Multiplexed Beam Steering in Fiber and Visible Light Communication Integrated Indoor Access Network. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 March 2024. [Google Scholar]
- Al-Ahmadi, S.; Maraqa, O.; Uysal, M.; Sait, S.M. Multi-user visible light communications: State-of-the-art and future directions. Ieee Access 2018, 6, 70555–70571. [Google Scholar] [CrossRef]
- Lian, J.; Brandt-Pearce, M.J. Multiuser visible light communication systems using OFDMA. J. Light. Technol. 2020, 38, 6015–6023. [Google Scholar] [CrossRef]
- Pham, T.V.; Le-Minh, H.; Pham, A.T. Multi-user visible light communication broadcast channels with zero-forcing precoding. IEEE Trans. Commun. 2017, 65, 2509–2521. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, N.; Wang, Y.; Tao, L.; Shi, J. Network architecture of a high-speed visible light communication local area network. IEEE Photonics Technol. Lett. 2014, 27, 197–200. [Google Scholar] [CrossRef]
- Kim, S.M.; Baek, M.W.; Nahm, S.H. Visible light communication using TDMA optical beamforming. Eurasip J. Wirel. Commun. Netw. 2017, 2017, 56. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, S.-M. Wireless optical energy transmission using optical beamforming. Opt. Eng. 2013, 52, 043205. [Google Scholar] [CrossRef]
- Makey, G.; Yavuz, Ö.; Kesim, D.K.; Turnalı, A.; Elahi, P.; Ilday, S.; Tokel, O.; Ilday, F.Ö.J. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics 2019, 13, 251–256. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Y.; Zhang, H.; Li, Z.; Shen, C.; Zhang, J.; Chi, N.; Shi, J. Enhanced Performance of Visible Light Communication Using Three-dimensional Spatial Multi-user Holographic Multiplexing. J. Light. Technol. 2024, 42, 3611–3620. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Zhao, S.-M.; Chen, H.-W. Turbulence mitigation scheme based on multiple-user detection in an orbital–angular-momentum multiplexed system. Chin. Phys. B 2016, 25, 114215. [Google Scholar] [CrossRef]
- Shang, Z.; Fu, S.; Hai, L.; Zhang, Z.; Li, L.; Gao, C. Multiplexed vortex state array toward high-dimensional data multicasting. Opt. Express 2022, 30, 34053–34063. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Xiong, R.; Ma, X.; Li, L.; Jiang, X. Depth multiplexing in an orbital angular momentum holography based on random phase encoding. Opt Express 2022, 30, 31863–31871. [Google Scholar] [CrossRef]
- Ferraro, P.; De Nicola, S.; Coppola, G.; Finizio, A.; Alfieri, D.; Pierattini, G. Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt. Lett. 2004, 29, 854–856. [Google Scholar] [CrossRef]
- Verrier, N.; Atlan, M. Off-axis digital hologram reconstruction: Some practical considerations. Appl. Opt. 2011, 50, H136–H146. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Frauel, Y.; Naughton, T.J.; Matoba, O.; Tajahuerce, E.; Javidi, B. Three-dimensional imaging and processing using computational holographic imaging. Proc. IEEE 2006, 94, 636–653. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y.; Wang, Z.; Liang, J.; Liu, X.; Li, Y.; Qiu, C.; Gong, L. Ultrahigh-density 3D holographic projection by scattering-assisted dynamic holography. Optica 2023, 10, 481–490. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, M.-S.; Baasantseren, G.; Kim, N. Fresnel and Fourier hologram generation using orthographic projection images. Opt. Express 2009, 17, 6320–6334. [Google Scholar] [CrossRef] [PubMed]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ren, H.; Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 2020, 14, 102–108. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Shi, J.; Fang, Y.; Chi, N. Time division multiplexed orbital angular momentum access system. Opt. Eng. 2016, 55, 036106. [Google Scholar] [CrossRef]
User | Depth (m) | X-Y Coordinate (m) | Power Allocation | Power Coverage | OAM Modes |
---|---|---|---|---|---|
1 | 0.6 | (0.032,0.032) | 0.2 | 0.2 | 1 |
2 | 0.65 | (0.035,0.035) | 0.4 | 0.4 | 2 |
3 | 0.7 | (0.035,0.044) | 0.6 | 0.6 | 3 |
4 | 0.75 | (0.014,0.044) | 0.8 | 0.8 | 4 |
5 | 0.8 | (0.037,0.057) | 1 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wei, Y.; Zhang, H.; Zhuang, Z.; Li, Z.; Shen, C.; Zhang, J.; Cai, H.; Chi, N.; Shi, J. Spatial Multiplexing Holography for Multi-User Visible Light Communication. Photonics 2025, 12, 160. https://doi.org/10.3390/photonics12020160
Chen C, Wei Y, Zhang H, Zhuang Z, Li Z, Shen C, Zhang J, Cai H, Chi N, Shi J. Spatial Multiplexing Holography for Multi-User Visible Light Communication. Photonics. 2025; 12(2):160. https://doi.org/10.3390/photonics12020160
Chicago/Turabian StyleChen, Chaoxu, Yuan Wei, Haoyu Zhang, Ziyi Zhuang, Ziwei Li, Chao Shen, Junwen Zhang, Haiwen Cai, Nan Chi, and Jianyang Shi. 2025. "Spatial Multiplexing Holography for Multi-User Visible Light Communication" Photonics 12, no. 2: 160. https://doi.org/10.3390/photonics12020160
APA StyleChen, C., Wei, Y., Zhang, H., Zhuang, Z., Li, Z., Shen, C., Zhang, J., Cai, H., Chi, N., & Shi, J. (2025). Spatial Multiplexing Holography for Multi-User Visible Light Communication. Photonics, 12(2), 160. https://doi.org/10.3390/photonics12020160