Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission
<p>Schematic diagram of circular coin-slot-type HC-ARF optical fiber structure.</p> "> Figure 2
<p>Transmission loss diagram of circular coin-slot HC-ARF.</p> "> Figure 3
<p>(<b>a</b>) Transmission loss spectra of coin-slot-type HC-ARF at different bending radii; (<b>b</b>) the transmission loss of coin-slot-type HC-ARF under different bending radii at a wavelength of 2 μm.</p> "> Figure 4
<p>Schematic diagram of the structure of the coin-slot-type HC-ARF.</p> "> Figure 5
<p>(<b>a</b>) Transmission loss at different cutting depths; (<b>b</b>) HOMER at different cutting depths; (<b>c</b>) Transmission losses corresponding to different wavelengths at the optimal cutting depth.</p> ">
Abstract
:1. Introduction
2. Parameter Optimization of Circular Coin-Slot-Type HC-ARF
2.1. Design of Circular Coin-Slot-Type Optical Fiber Structure
2.2. Design of Cut Circular Coin-Slot Optical Fiber Structure
3. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duguay, M.; Kokubun, Y.; Koch, T.; Pfeiffer, L. Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures. Appl. Phys. Lett. 1986, 49, 13–15. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Cregan, R.F.; Mangan, B.J.; Knight, J.C.; Birks, T.A.; Russell, P.S.; Roberts, P.J.; Allan, D.C. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef] [PubMed]
- Benabid, F.; Knight, J.C.; Antonopoulos, G.; Russell, P.S. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Litchinitser, N.M.; Abeeluck, A.K.; Headley, C.; Eggleton, B.J. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett. 2002, 27, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, Y.Y.; Gao, S.F.; Wang, M.L.; Wang, P. Recent Progress in Low-Loss Hollow-Core Anti-Resonant Fibers and Their Applications. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 4400312. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Couny, F.; Roberts, P.J.; Benabid, F. Low loss broadband transmission in optimized core-shape Kagome Hollow-Core PCF. In Proceedings of the Conference on Lasers and Electro-Optics 2010, San Jose, CA, USA, 16–21 May 2010; p. CPDB4. [Google Scholar]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow—Core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 2011, 19, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Kolyadin, A.; Kosolapov, A.; Pryamikov, A.; Biriukov, A.; Plotnichenko, V.; Dianov, E. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 2013, 21, 9514–9519. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with low bending loss. Opt Express 2014, 22, 10091–10096. [Google Scholar] [CrossRef] [PubMed]
- Poletti, F. Nested antiresonant nodeless hollow core fiber. Opt Express 2014, 22, 23807–23828. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-f.; Wang, Y.-y.; Ding, W.; Jiang, D.-l.; Gu, S.; Zhang, X.; Wang, P. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 2018, 9, 2828. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Hayes, J.R.; Chen, Y.; Jasion, G.T.; Sandoghchi, S.R.; Slavik, R.; Fokoua, E.N.; Bawn, S.; Sakr, H.; Davidson, I.A.; et al. Record Low-Loss 1.3dB/km Data Transmitting Antiresonant Hollow Core Fibre. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Roma, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Jasion, G.T.; Bradley, T.D.; Harrington, K.; Sakr, H.; Chen, Y.; Fokoua, E.R.N.; Davidson, I.A.; Taranta, A.; Hayes, J.R.; Richardson, D.J.; et al. Hollow Core NANF with 0.28 dB/km Attenuation in the C and L Bands. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Sun, T.; Su, X.; Meng, F.; Wang, Z.; Song, J.; Zhang, C.; Xu, T.; Zhang, Y.; Zhang, H.; Cui, M.; et al. Design of 2 μm Low-Loss Hollow-Core Anti-Resonant Fibers. Micromachines 2023, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Numkam Fokoua, E.R.; Abokhamis Mousavi, S.; Jasion, G.T.; Richardson, D.J.; Poletti, F. Loss in hollow core optical fibers: Mechanisms, scaling rules and limits. Adv. Opt. Photonics 2023, 15, 1–85. [Google Scholar] [CrossRef]
- Habib, M.S.; Antonio-Lopez, J.E.; Markos, C.; Schülzgen, A.; Amezcua-Correa, R. Single-mode, low loss hollow-core anti-resonant fiber designs. Opt Express 2019, 27, 3824–3836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, W.; Dong, Z.; Yao, J.; Wan, S.; Hou, Y.; Wang, P. Low loss nested hollow-core anti-resonant fiber at 2 µm spectral range. Opt. Lett. 2022, 47, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Mulvad, H.C.H.; Abokhamis Mousavi, S.; Zuba, V.; Xu, L.; Sakr, H.; Bradley, T.D.; Hayes, J.R.; Jasion, G.T.; Numkam Fokoua, E.; Taranta, A.; et al. Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre. Nat. Photonics 2022, 16, 448–453. [Google Scholar] [CrossRef]
- Chen, Y.; Petrovich, M.N.; Fokoua, E.N.; Adamu, A.I.; Hassan, M.R.A.; Sakr, H.; Slavík, R.; Gorajoobi, S.B.; Alonso, M.; Ando, R.F.; et al. Hollow Core DNANF Optical Fiber with <0.11 dB/km Loss. In Proceedings of the 2024 Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 24–28 March 2024; p. Th4A.8. [Google Scholar]
- Gao, S.; Sun, Y.; Chen, H.; Ge, D.; Wang, D.; Zhang, D.; Li, H.; Ding, W.; Wang, Y. Four-fold truncated double-nested anti-resonant hollow-core fiber for ultralow loss and robust single mode operation. In Proceedings of the Advanced Photonics Congress 2024, Québec City, QC, Canada, 28 July–1 August 2024; p. JTh4A.5. [Google Scholar]
- Suslov, D.; Komanec, M.; Numkam Fokoua, E.R.; Dousek, D.; Zhong, A.; Zvánovec, S.; Bradley, T.D.; Poletti, F.; Richardson, D.J.; Slavík, R. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. Sci. Rep. 2021, 11, 8799. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 2004, 230, 197–203. [Google Scholar] [CrossRef]
- Koch, G.J.; Beyon, J.Y.; Barnes, B.W.; Petros, M.; Yu, J.; Amzajerdian, F.; Kavaya, M.J.; Singh, U.N. High-energy 2 μm Doppler lidar for wind measurements. Opt. Eng. 2007, 46, 116201–116214. [Google Scholar]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Tian, Z.; Li, Y.; Su, X.; Chi, H.; Nie, Z.; Luo, X.; Li, B.; Sun, T.; Sarkisov, S.; et al. Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission. Photonics 2024, 11, 1109. https://doi.org/10.3390/photonics11121109
Zhang B, Tian Z, Li Y, Su X, Chi H, Nie Z, Luo X, Li B, Sun T, Sarkisov S, et al. Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission. Photonics. 2024; 11(12):1109. https://doi.org/10.3390/photonics11121109
Chicago/Turabian StyleZhang, Boyue, Zhaoyang Tian, Yu Li, Xinyang Su, Hongxiang Chi, Zikun Nie, Xiaoyu Luo, Bohan Li, Tianran Sun, Sergey Sarkisov, and et al. 2024. "Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission" Photonics 11, no. 12: 1109. https://doi.org/10.3390/photonics11121109
APA StyleZhang, B., Tian, Z., Li, Y., Su, X., Chi, H., Nie, Z., Luo, X., Li, B., Sun, T., Sarkisov, S., & Kobtsev, S. (2024). Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission. Photonics, 11(12), 1109. https://doi.org/10.3390/photonics11121109