Quantitative Analysis of Acquisition Speed of High-Precision FLIM Technologies via Simulation and Modeling
<p>Processes for 2D time-domain fluorescence lifetime imaging technique.</p> "> Figure 2
<p>The basic principle of the TCSPC-FLIM system. (<b>a</b>) The process of the TCSPC system capturing a fluorescence decay signal. (<b>b</b>) Histograms formed by single counts. (<b>c</b>) Histogram formed by large cumulative counts.</p> "> Figure 3
<p>The basic principle of the synchroscan SC-FLIM system. (<b>a</b>) The process of the synchroscan SC-FLIM system capturing a fluorescence decay signal. (<b>b</b>) The relationship between the readout camera-captured image and the histogram data. (<b>c</b>) Histogram at position <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>i</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>Scanning schematic of the FLIM system, where D denotes the detector, and T denotes the timing system. (<b>a</b>) Single-channel point scanning. (<b>b</b>) Multi-channel point scanning. (<b>c</b>) Wide-field scanning.</p> "> Figure 5
<p>Schematic diagram of synchroscan SC-FLIM system.</p> "> Figure 6
<p>Schematic diagram of spatial distribution of fluorescence signals in synchroscan SC-FLIM system. (<b>a</b>) Fluorescence transfer process in different modules of the SC-FLIM system. (<b>b</b>) Spatial resolution of the sample. (<b>c</b>) Spatial schematic of the slit. (<b>d</b>) Resolution of the readout camera.</p> "> Figure 7
<p>Decay curve of the standard deviation of the measured signal (<math display="inline"><semantics> <msub> <mi>σ</mi> <mi>τ</mi> </msub> </semantics></math>) with respect to the <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 8
<p>Measurement accuracy of two FLIM systems at different <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> </semantics></math> values. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo>%</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>8</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>60</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>Measurement accuracy of two FLIM systems for short-lifetime signals (<math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> ps and <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> ps).</p> "> Figure 10
<p>Measurement accuracy of two FLIM systems for Erythrosine B (methanol as a solvent).</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Factors Influencing the Acquisition Speed in the Fluorescence Generation Process
2.2. Factors Influencing the Acquisition Speed in the Fluorescence Detection Process
2.3. Factors Influencing the Acquisition Speed in the Lifetime Fitting Process
2.4. Factors Influencing the Acquisition Speed in the Spatial Scanning Process
Summary of the Factors Influencing the Acquisition Speed
3. Method
3.1. Calculation of the Photon Emission Rate
3.2. Calculation of the Photon Counting Rate
3.2.1. TCSPC-FLIM
3.2.2. Synchroscan SC-FLIM
3.3. Calculation of the Required Photons
3.4. Calculation of the Number of Parallel Channels
3.5. Calculation of the Total Acquisition Time
4. Results
4.1. Details of Sample and Measuring Instrument
4.1.1. Standard Fluorescent Dye
4.1.2. Parameter Settings in the Measuring Instrument
- A high photon emission rate and high photon transfer efficiency: The photon counting rate of the SC-FLIM system is high enough to record the required photons without repeating the excitation-detection process.
- A low photon emission rate and low photon transfer efficiency: The photon counting rate of the SC-FLIM system is equal to the laser frequency, and the number of excitation–detection processes to be repeated is equal to the number of photons required.
4.2. Calculation Results of the Required Photons via Numerical Simulation
4.3. Calculation of Acquisition Time
4.3.1. Acquisition Time of TCSPC-FLIMs
4.3.2. Acquisition Time of Synchroscan SC-FLIMs
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becker, W. Fluorescence lifetime imaging–techniques and applications. J. Microsc. 2012, 247, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Heaster, T.M.; Sharick, J.T.; Gillette, A.A.; Skala, M.C. Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications. Med. Photonics 2020, 25, 071203. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, H.; Ito, H.; Inoue, M.; Tabata, K.; Sato, Y.; Yamagata, K. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci. Rep. 2015, 5, 10657. [Google Scholar] [CrossRef] [PubMed]
- Shimolina, L.; Izquierdo, M.A. Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 2017, 7, 41097. [Google Scholar] [CrossRef]
- Priessner, M.; Summers, P.A.; Lewis, B.W.; Sastre, M.; Ying, L.; Kuimova, M.K.; Vilar, R. Selective detection of Cu+ ions in live cells via fluorescence lifetime imaging microscopy. Angew. Chem. Int. Ed. 2021, 60, 23148–23153. [Google Scholar] [CrossRef]
- Gao, H.; Kam, C.; Chou, T.Y.; Wu, M.Y.; Zhao, X.; Chen, S. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy. Nanoscale Horiz. 2020, 5, 488–494. [Google Scholar] [CrossRef]
- Penjweini, R.; Roarke, B.; Alspaugh, G.; Gevorgyan, A.; Andreoni, A.; Pasut, A.; Sackett, D.L.; Knutson, J.R. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol. 2020, 34, 101549. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, Y.; Wang, Z.M.; Liu, Z.; Wu, M. FLIM as a promising tool for cancer diagnosis and treatment monitoring. Nano-Micro Lett. 2021, 13, 133. [Google Scholar] [CrossRef]
- He, T.; Ren, C.; Li, Z.; Xiao, S.; Li, J.; Lin, X.; Ye, C. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging. Appl. Phys. Lett. 2018, 112, 211102. [Google Scholar] [CrossRef]
- Sarder, P.; Maji, D.; Achilefu, S. Molecular probes for fluorescence lifetime imaging. Appl. Phys. Lett. 2015, 26, 963–974. [Google Scholar] [CrossRef]
- Liu, L.; QI, M.; Gao, P. Application of Fluorescence Lifetime Imaging in Cancer Diagnosis (Invited). Acta Photonica Sin. 2021, 50, 1017001. [Google Scholar]
- Alfons, B.; Bec, J.; Weyers, B.; Marsden, M.; Zhou, X.; Li, C.; Marcu, L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. J. Biophoton. 2021, 14, e202000472. [Google Scholar] [CrossRef]
- Laurence, T.A.; Bude, J.D.; Shen, N.; Miller, P.E.; Steele, W.A.; Guss, G.; Adams, J.J.; Wong, L.L. Ultrafast photoluminescence as a diagnostic for laser damage initiation. In Proceedings of the SPIE 7504: Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 31 December 2009. [Google Scholar] [CrossRef]
- Elson, D.S.; Munro, I.; Requejo-Isidro, J.; Dunsby, C. Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier. New J. Phys. 2004, 6, 180. [Google Scholar] [CrossRef]
- Franke, R.; Holst, G.A. Frequency-domain fluorescence lifetime imaging system (pco. flim) based on a in-pixel dual tap control CMOS image sensor. In Proceedings of the SPIE 9328: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII, San Francisco, CA, USA, 2 March 2015. [Google Scholar] [CrossRef]
- Agronskaia, A.V.; Tertoolen, L.; Gerritsen, H.C. Fast fluorescence lifetime imaging of calcium in living cells. J. Biomed. Opt. 2004, 9, 1230–1237. [Google Scholar] [CrossRef]
- Katsoulidou, K.; Bergmann, A.; Becker, W. How fast can TCSPC FLIM be made. In Proceedings of the SPIE 6771: Advanced Photon Counting Techniques, Boston, MA, USA, 15 October 2007. [Google Scholar] [CrossRef]
- Fujiwara, M.; Cieslik, W. Fluorescence Lifetime Imaging Microscopy: Two-Dimensional Distribution Measurement of Fluorescence Lifetime. Methods Enzymol. 2006, 414, 633–642. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Y.; Yi, M.; Zhang, C.; Liu, L. Research Progress on Fast Fluorescence Lifetime Imaging Microscopy and Its in vivo Applications (Invited). Laser Optoelectron. Prog. 2024, 61, 0618005. [Google Scholar]
- Liu, X.; Lin, D.; Becker, W. Fast fluorescence lifetime imaging techniques: A review on challenge and development. J. Innov. Opt. Health Sci. 2019, 12, 1930003. [Google Scholar] [CrossRef]
- Becker, W.; Bergmann, A.; Biscotti, G.L. Advanced time-correlated single photon counting techniques for spectroscopy and imaging in biomedical systems. In Proceedings of the SPIE 5340: Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA, USA, 1 June 2004. [Google Scholar] [CrossRef]
- Koenig, M.; Orthaus-Mueller, S.; Dowler, R. Rapid FLIM: The new and innovative method for ultra-fast imaging of biological processes. Biophys. J. 2017, 112, 298a. [Google Scholar] [CrossRef]
- Becker, W.; Su, B.; Bergmann, A. Fast-acquisition multispectral FLIM by parallel TCSPC. In Proceedings of the SPIE 7183: Multiphoton Microscopy in the Biomedical Sciences, San Jose, CA, USA, 13 February 2009. [Google Scholar] [CrossRef]
- Poland, S.P.; Krstajić, N.; Monypenny, J. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed. Opt. Express 2015, 6, 277–296. [Google Scholar] [CrossRef]
- Liu, X.; Lin, D.; Wu, Q. Recent progress of fluorescence lifetime imaging microscopy technology and its application. Acta Phys. Sin. 2018, 67, 178701. [Google Scholar] [CrossRef]
- Features of Universal Streak Camera. Available online: https://www.hamamatsu.com/us/en/product/photometry-systems/streak-camera/universal-streak-camera/features (accessed on 22 April 2024).
- Liu, L.; Li, Y.; Sun, L. Fluorescence lifetime imaging microscopy using a streak camera. In Proceedings of the SPIE 8948: Multiphoton Microscopy in the Biomedical Sciences, San Francisco, CA, USA, 28 February 2014. [Google Scholar] [CrossRef]
- Krishnan, R.V.; Saitoh, H.; Terada, H. Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. [Google Scholar] [CrossRef]
- Philip, J.; Carlsson, K. Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A 2003, 20, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Exner, H.; Hartwig, L.; Ebert, R.; Kloetzer, S.; Streek, A.; Schille, J.; Loeschner, U. High speed laser micro processing using high brilliance continuous wave laser radiation. J. Laser Micro Nanoeng. 2012, 7, 115. [Google Scholar] [CrossRef]
- Forbes, M.W.; Jockusch, R.A. Gas-phase fluorescence excitation and emission spectroscopy of three xanthene dyes (rhodamine 575, rhodamine 590 and rhodamine 6G) in a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2011, 22, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, L.M.; Suhling, K. Fast timing techniques in FLIM applications. Front. Phys. 2020, 8, 161. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, Y.; Li, D.D. One-dimensional deep learning architecture for fast fluorescence lifetime imaging. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–10. [Google Scholar] [CrossRef]
- Boens, N.; Qin, W.; Basari, N. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem. 2007, 79, 2137–2149. [Google Scholar] [CrossRef]
- Fluorescence Lifetime Standards Data Table. Available online: https://www.edinst.com/blog/fluorescence-lifetime-standards/ (accessed on 25 April 2024).
- The T4040 Delivers a Custom 4.2 Mpx Back Side Illuminated Sensor in the Compact T-Series form Factor. Available online: https://www.phantomhighspeed.com/products/cameras/tseries/t4040 (accessed on 9 June 2024).
System Performance Metrics | FD [15] | TG [16] | TCSPC [17] | SC [18] |
---|---|---|---|---|
Temporal Resolution (ps) | 100 | 200 | 3.5 | 15 |
Spatial Resolution (m) | 5.6 | 16 | 0.2 | 0.2 |
Response Sensitivity | R 1 = 0.16 A/W @500 nm | R = 0.17 A/W @600 nm | SER 2 = 200 mV @490 nm | R = 250 A/W @500 nm |
Spectral Response Range (nm) | 380–800 | 200–900 | 300–900 | 400–900 |
Data Acquisition Speed (fps) | 22 (1008 × 1008) | 50 (128 × 128) | 2 (128 × 128) | 0.3 (240 × 225) |
Parameter | Definition |
---|---|
Photon Emission Rate (PER) | Number of photons emitted from the sample per unit time. |
Photon Counting Rate (PCR) | Number of photons counted via a FLIM system per unit time. |
Required SNR | Minimum SNR of the acquired signal when the fitting lifetime meets the fitting accuracy requirements. |
Dwell Time (DT) | The time during which the laser beam is fixed at a specific position before moving to the next position. |
Number of Parallel Channels (NPC) | The number of independent detection channels capable of simultaneously acquiring fluorescence lifetime data from multi-pixels. |
TCSPC-FLIM | Synchroscan SC-FLIM | |
---|---|---|
Number of time bins | 256 | 1600 |
Width of time bins | 50 ps | 1 ps |
SC-FLIM | TCSPC-FLIM | |
---|---|---|
4% | 64 ps | 512 ps |
8% | 128 ps | 1024 ps |
30% | 480 ps | 3840 ps |
60% | 960 ps | 7680 ps |
TCSPC Technologies | Minimum PCR | |||
---|---|---|---|---|
Classical TCSPC | 4 MHz | 1.25 ms | 5242.88 s | 81.92 s |
Hybrid PMT | 20 MHz | 0.25 ms | 1048.58 s | 16.384 s |
SPAD array (64 × 64) | 13,516.8 MHz 1 | 1.25 ms 2 | 1.54 s 3 | 0.02 s 4 |
Simulated Conditions | Readout Camera | vs. 1 | ||
---|---|---|---|---|
High-PER and High-PTE | 13,510 fps (2048 × 1152) | 10 ns < 74.02 s | 0.15 s | 0.019 s |
High-PER and High-PTE | 60,500 fps (2560 × 256) | 10 ns < 16.53 s | 0.03 s | 0.424 ms |
Low-PER and Low-PTE | 13,510 fps (2048 × 1152) | 50 s < 74.02 s | 0.15 s | 0.019 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Miao, L.; Wen, J.; Li, Q.; Chen, J.; Yang, Q.; Zhang, X.; Li, J.; Wu, Y.; Yang, Y.; et al. Quantitative Analysis of Acquisition Speed of High-Precision FLIM Technologies via Simulation and Modeling. Photonics 2024, 11, 973. https://doi.org/10.3390/photonics11100973
Lu J, Miao L, Wen J, Li Q, Chen J, Yang Q, Zhang X, Li J, Wu Y, Yang Y, et al. Quantitative Analysis of Acquisition Speed of High-Precision FLIM Technologies via Simulation and Modeling. Photonics. 2024; 11(10):973. https://doi.org/10.3390/photonics11100973
Chicago/Turabian StyleLu, Jinzheng, Ling Miao, Jiaxing Wen, Qiang Li, Jingwei Chen, Qiang Yang, Xing Zhang, Jin Li, Yuchi Wu, Yue Yang, and et al. 2024. "Quantitative Analysis of Acquisition Speed of High-Precision FLIM Technologies via Simulation and Modeling" Photonics 11, no. 10: 973. https://doi.org/10.3390/photonics11100973
APA StyleLu, J., Miao, L., Wen, J., Li, Q., Chen, J., Yang, Q., Zhang, X., Li, J., Wu, Y., Yang, Y., Wu, S., Mo, W., & Xiang, Q. (2024). Quantitative Analysis of Acquisition Speed of High-Precision FLIM Technologies via Simulation and Modeling. Photonics, 11(10), 973. https://doi.org/10.3390/photonics11100973