Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces
<p>(<b>a</b>) Schematic of the proposed THz meta-mirror composed of two metasurfaces cascaded in parallel and (<b>b</b>) the periodic metal (Cu) ring unit that constitutes the metasurface.</p> "> Figure 2
<p>The lump equivalent circuit of (<b>a</b>) a single layer of metasurface with (<b>b</b>) a low-Q resonance mode in its reflective spectrum and (<b>c</b>) that of two cascaded metasurfaces sandwiched by a thick spacer for independent and decoupled resonant modes.</p> "> Figure 3
<p>(<b>a</b>) The transmission spectra of two identical metasurfaces cascaded in parallel with the parameters of <span class="html-italic">P</span> = 144 μm, <span class="html-italic">D</span> = 120 μm and <span class="html-italic">g</span> = 8 μm and sandwiched by a Rogers 3003 spacer with a varied thickness (<span class="html-italic">t</span>) of 40 μm, 80 μm and 160 μm in comparison with that of only one metasurface; (<b>b</b>) the coupling factor (<span class="html-italic">k</span>) numerically extracted for varied spacer thickness (<span class="html-italic">t</span>).</p> "> Figure 4
<p>The transmission spectra of two identical metasurfaces cascaded in parallel with the parameters of <span class="html-italic">P</span> = 144 μm, <span class="html-italic">g</span> = 8 μm, <span class="html-italic">t</span> = 80 μm, and the varied lengths of <span class="html-italic">D</span> = 110 μm, 120 μm and 130 μm.</p> "> Figure 5
<p>Transmission spectra of two identical metasurfaces cascaded in parallel with the parameters of <span class="html-italic">P</span> = 160 μm, <span class="html-italic">t</span> = 127 μm and <span class="html-italic">D</span> = 130 μm, and the varied widths of <span class="html-italic">g</span> = 8 μm, 12 μm, 16 μm and 20 μm.</p> "> Figure 6
<p>The transmission spectra of two identical metasurfaces cascaded in parallel with the parameters of <span class="html-italic">D</span> = 130 μm, <span class="html-italic">g</span> = 8 μm and <span class="html-italic">t</span> = 127 μm and varied periods of <span class="html-italic">P =</span> 140 μm, 160 μm and 180 μm.</p> "> Figure 7
<p>The reflection spectra of two identical metasurfaces cascaded in parallel with the parameters of <span class="html-italic">P</span> = 140 μm, <span class="html-italic">g</span> = 8 μm and <span class="html-italic">t</span> = 127 μm, and varied lengths of <span class="html-italic">D</span> = 105 μm, 110 μm, 115 μm and 120 μm.</p> "> Figure 8
<p>The reflection spectra (or the scattering parameters of <span class="html-italic">S</span><sub>11</sub>) of two decoupled metasurfaces cascaded in parallel with the parameters of <span class="html-italic">P</span> = 140 μm, <span class="html-italic">g</span> = 8 μm and <span class="html-italic">D</span> = 105 μm and sandwiched by spacer with the varied thicknesses of <span class="html-italic">t</span> = 127 μm, 254 μm and 381 μm.</p> "> Figure 9
<p>The reflective spectra of meta-mirrors configured by two decoupled metasurfaces that are sandwiched by a dielectric spacer in comparison with the spectrum of a Bragg mirror composed of 10 layers or 5 pairs of Rogers 3003 and 3006. For clear analyses, critical points (<span class="html-italic">P</span><sub>1</sub>~<span class="html-italic">P</span><sub>6</sub>) are marked.</p> ">
Abstract
:1. Introduction
2. Scheme and Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, T.; Wu, Y.-K.; Luo, X.; Guo, L.J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 2010, 1, 59. [Google Scholar] [CrossRef]
- Julian, M.N.; Williams, C.; Borg, S.; Bartram, S.; Kim, H.J. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 2020, 7, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, F.; Ou, Y.; Cai, J.; Yu, H. Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface. Nanophotonics 2018, 8, 117–125. [Google Scholar] [CrossRef]
- Wu, S.; Gu, Y.; Ye, Y.; Ye, H.; Chen, L. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime. Opt. Express 2018, 26, 21479–21489. [Google Scholar] [CrossRef]
- Huo, D.; Zhang, J.; Wang, Y.; Wang, C.; Su, H.; Zhao, H. Broadband perfect absorber based on tin-nanocone metasurface. Nanomaterials 2018, 8, 485. [Google Scholar] [CrossRef]
- de Araújo, J.B.O.; Siqueira, G.L.; Kemptner, E.; Weber, M.; Junqueira, C.; Mosso, M.M. An Ultrathin and Ultrawideband Metamaterial Absorber and an Equivalent-Circuit Parameter Retrieval Method. IEEE Trans. Antennas Propag. 2020, 68, 3739–3746. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Nirantar, S.; Member, S.; Withayachumnankul, W.; Bhaskaran, M. Second-Order Terahertz Bandpass Frequency Selective Surface With Miniaturized Elements. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 761–769. [Google Scholar] [CrossRef]
- Qiao, S.; Zhang, Y.; Zhao, Y.; Zhou, Y.; Liang, S.; Yang, Z. Multiband Frequency-Selective Surface With Five Resonance Peaks in Terahertz Band. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 292–299. [Google Scholar] [CrossRef]
- Deng, Z.L.; Jin, M.; Ye, X.; Wang, S.; Shi, T.; Deng, J.; Mao, N.; Cao, Y.; Guan, B.O.; Alù, A.; et al. Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces. Adv. Funct. Mater. 2020, 30, 1910610. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, L.; Chen, Z.; Ansari, M.A.; Chen, X.; Chan, M. Polarization-multiplexed metaholograms with erasable functionality. J. Phys. D. Appl. Phys. 2023, 56, 155102. [Google Scholar] [CrossRef]
- Shi, H.; Wang, L.; Peng, G.; Chen, X.; Li, J.; Zhu, S.; Zhang, A.; Xu, Z. Generation of Multiple Modes Microwave Vortex Beams Using Active Metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 59–63. [Google Scholar] [CrossRef]
- Wang, E.; Shi, L.; Niu, J.; Hua, Y.; Li, H.; Zhu, X.; Xie, C.; Ye, T. Vector Vortex Beam Arrays: Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments (Advanced Optical Materials 8/2019). Adv. Opt. Mater. 2019, 7, 1970029. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Y.; Chen, S.; Liao, S.; Zhang, H.; Xie, C.; Chan, M. Phase change induced active metasurface devices for dynamic wavefront control. J. Phys. D. Appl. Phys. 2020, 53, 204001. [Google Scholar] [CrossRef]
- de Galarreta, C.R.; Alexeev, A.M.; Au, Y.Y.; Lopez-Garcia, M.; Klemm, M.; Cryan, M.; Bertolotti, J.; Wright, C.D. Nonvolatile Reconfigurable Phase-Change Metadevices for Beam Steering in the Near Infrared. Adv. Funct. Mater. 2018, 28, 1704993. [Google Scholar] [CrossRef]
- Kita, S.; Takata, K.; Ono, M.; Nozaki, K.; Kuramochi, E.; Takeda, K.; Notomi, M. Coherent control of high efficiency metasurface beam deflectors with a back partial reflector. APL Photon. 2017, 2, 046104. [Google Scholar] [CrossRef]
- Ruirui, S.; Qinling, D.; Shaolin, Z.; Mingbo, P. Catenary-based phase change metasurfaces for mid-infrared switchable wavefront control. Opt. Express 2021, 29, 23006–23018. [Google Scholar]
- Yin, X.; Steinle, T.; Huang, L.; Taubner, T.; Wuttig, M.; Zentgraf, T.; Giessen, H. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 2017, 6, e17016. [Google Scholar] [CrossRef]
- Huang, Y.; Pu, M.; Zhang, F.; Luo, J.; Li, X.; Ma, X.; Luo, X. Broadband Functional Metasurfaces: Achieving Nonlinear Phase Generation toward Achromatic Surface Cloaking and Lensing. Adv. Opt. Mater. 2019, 7, 1801480. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7, 1801616. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, L.; Shen, L.; Wang, Z.; Zheng, B.; Wang, H.; Li, E.; Shen, N.H.; Koschny, T.; Soukoulis, C.M.; et al. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater. 2017, 9, e428. [Google Scholar] [CrossRef]
- Kotov, O.V.; Lozovik, Y.E. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B 2019, 100, 165424. [Google Scholar] [CrossRef]
- You, J.W.; Lan, Z.; Ma, Q.; Gao, Z.; Yang, Y.; Gao, F.; Xiao, M.; Cui, T.J. Topological metasurface: From passive toward active and beyond. Photon. Res. 2023, 11, B65. [Google Scholar] [CrossRef]
- Yermakov, O.Y.; Permyakov, D.V.; Porubaev, F.V.; Dmitriev, P.A.; Samusev, A.K.; Iorsh, I.V.; Malureanu, R.; Lavrinenko, A.V.; Bogdanov, A.A. Effective surface conductivity of optical hyperbolic metasurfaces: From far-field characterization to surface wave analysis. Sci. Rep. 2018, 8, 14135. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zang, X.F.; Chen, L.; Peng, Y.; Cai, B.; Nash, G.R.; Zhu, Y.M. Compact Broadband Terahertz Perfect Absorber Based on Multi-Interference and Diffraction Effects. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 40–44. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, A.D.; Noman, M.; Rehman, A.U. Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array. Plasmonics 2018, 13, 591–597. [Google Scholar] [CrossRef]
- Grant, J.; Ma, Y.; Saha, S.; Khalid, A.; Cumming, D.R.S. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 2011, 36, 3476–3478. [Google Scholar] [CrossRef]
- Qu, Y.; Li, Q.; Du, K.; Cai, L.; Lu, J.; Qiu, M. Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST. Laser Photon. Rev. 2017, 11, 1700091. [Google Scholar] [CrossRef]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Hale, L.L.; Vabishchevich, P.P.; Luk, T.S.; Addamane, S.J.; Reno, J.L.; Brener, I. Perfectly absorbing dielectric metasurfaces for photodetection. APL Photon. 2020, 5, 101304. [Google Scholar] [CrossRef]
- Sobhani, A.; Knight, M.W.; Wang, Y.; Zheng, B.; King, N.S.; Brown, L.V.; Fang, Z.; Nordlander, P.; Halas, N.J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643–1646. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Y.; Ni, P.N.; Wang, Q.H.; Kan, Q.; Briere, G.; Chen, P.P.; Zhao, Z.Z.; Delga, A.; Ren, H.R.; Chen, H.D.; et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 2020, 15, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Crozier, K.B. Semiconductor lasers with integrated metasurfaces for direct output beam modulation, enabled by innovative fabrication methods. Nanophotonics 2023, 12, 1443–1457. [Google Scholar] [CrossRef]
- Spägele, C.; Tamagnone, M.; Kazakov, D.; Ossiander, M.; Piccardo, M.; Capasso, F. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat. Commun. 2021, 12, 3787. [Google Scholar] [CrossRef]
- Bouchon, P.; Koechlin, C.; Pardo, F.; Haïdar, R.; Pelouard, J. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt. Lett. 2012, 37, 1038–1040. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, S.; Chaurasiya, D.; Srivastava, K.V. An Ultrawideband Ultrathin Metamaterial Absorber Based on Circular Split Rings. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1172–1175. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, L.; Deng, Q.; Liao, S.; Xue, Q.; Chan, M. Intercoupling of Cascaded Metasurfaces for Broadband Spectral Scalability. Materials 2023, 16, 2013. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Jin, Y.; He, S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 2010, 27, 498–504. [Google Scholar] [CrossRef]
- Yang, J.; Wu, X.; Song, J.; Huang, C.; Huang, Y.; Luo, X. Cascaded metasurface for simultaneous control of transmission and reflection. Opt. Express 2019, 27, 9061–9070. [Google Scholar] [CrossRef]
- Cai, X.; Tang, R.; Zhou, H.; Li, Q.; Ma, S.; Wang, D.; Liu, T.; Ling, X.; Tan, W.; He, Q.; et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photon. 2021, 3, 036003. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Su, Y.; Yan, M.; Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 2010, 18, 8367–8382. [Google Scholar] [CrossRef]
- Powell, D.A.; Lapine, M.; Gorkunov, M.V.; Shadrivov, I.V.; Kivshar, Y.S. Metamaterial tuning by manipulation of near-field interaction. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 82, 155128. [Google Scholar] [CrossRef]
- Rosa, E.B. The self and mutual-inductances of linear conductors. Bull. Bur. Stand. 1908, 4, 301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Li, B.; Zhou, S.; Huang, G. Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces. Photonics 2024, 11, 796. https://doi.org/10.3390/photonics11090796
Fan Z, Li B, Zhou S, Huang G. Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces. Photonics. 2024; 11(9):796. https://doi.org/10.3390/photonics11090796
Chicago/Turabian StyleFan, Zhihua, Boyu Li, Shaolin Zhou, and Gang Huang. 2024. "Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces" Photonics 11, no. 9: 796. https://doi.org/10.3390/photonics11090796
APA StyleFan, Z., Li, B., Zhou, S., & Huang, G. (2024). Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces. Photonics, 11(9), 796. https://doi.org/10.3390/photonics11090796