Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton’s Lymphoma Ascites-Bearing Swiss albino Mice
<p>(<b>A</b>) Cell migration assay of V79 cell line; (<b>B</b>) A375 cell lines with 100 μg/mL of EEP and N-EEP treatment; magnification 20X (<b>C</b>) biocompatibility assay assessed by hemolysis conducted after 3 h incubation with various concentrations of EEP and N-EEP along with positive and negative control; and (<b>D</b>) percentage of hemolysis induced by EEP and N-EEP.</p> "> Figure 2
<p>(<b>A</b>) Percentage of cell death after short-term toxicity analysis on DLA cells using trypan blue staining; (<b>B</b>) cell viability assessment using MTT analysis on DLA cells; (<b>C</b>) effect of EEP and N-EEP on tumor growth monitored by the increase in tumor volume with time; (<b>D</b>) average life span; and (<b>E</b>) body weight gain of the animals induced with DLA tumor and DLA tumor treated with EEP and N-EEP. (*—<span class="html-italic">p</span> < 0.01, in comparison with untreated control; α—<span class="html-italic">p</span> < 0.01, in comparison with the EEP treatment group at the same dose).</p> "> Figure 3
<p>Gene expression was estimated in DLA cells aspirated from the mice tumor after treatment with EEP (high-300 mg/kg) and different concentrations of N-EEP (low and high, 150 and 300 mg/kg, respectively). The untreated tumor mice were taken as control. (<b>A</b>) GAPDH; (<b>B</b>) Bax; (<b>C</b>) p53; and (<b>D</b>) caspase 3. Representative images of animals after 29 days of treatment compared with the control. (<b>E</b>) (<b>i</b>) control, (<b>ii</b>) EEP 300 mg/kg; (<b>F</b>) (<b>i</b>) control, (<b>iii</b>) N-EEP 150 mg/kg; (<b>G</b>) (<b>i</b>) control, (<b>iv</b>) N-EEP 300 mg/kg. (<b>H</b>) The gene expression percentage of caspase 3, Bax, p53, and GAPDH in untreated control, EEP 300 mg/kg, N-EEP 150 mg/kg, and 300 mg/kg. Fluorescent microscopic images (20×) of Hoechst-stained cells in (<b>I</b>) control, (<b>J</b>) EEP 300 mg/kg treatment, (<b>K</b>) N-EEP 150 mg/kg treatment, and (<b>L</b>) N-EEP 300 mg/kg treatment. The arrows indicate the condensed nuclei indicating the apoptotic cells.</p> ">
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Preparation and Characterization of EEP and N-EEP
2.3. Scratch Assay
2.4. Biocompatibility Assay
2.5. Animals
2.6. Induction of DLA in Mice
2.7. Cytotoxicity Study
2.7.1. Short-Term Toxicity Effect
2.7.2. Long-Term Toxicity Effect
2.8. Hoechst Staining Methodology
2.9. Tumor Induction and Treatment Protocol
2.9.1. Tumor Induction
2.9.2. Gain in Body Weight
2.9.3. Tumor Size Analysis
2.9.4. Lifespan Extension (Percentage)
2.9.5. Gene Expression Analysis
RNA Isolation
cDNA Synthesis
Polymer Chain Reaction for Identification of Genes Expressed
Electrophoresis for Visualization of the PCR Product
2.10. Statistical Analysis
3. Results and Discussions
3.1. Characterization of EEP and N-EEP
3.2. Cell Migration Analysis
3.3. Biocompatibility Analysis
3.4. Cytotoxicity Analysis
3.5. Hoechst Staining
3.6. Effect of EEP and N-EEP on Tumor Growth
3.7. Analysis of Gene Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, V.; Bose, C.; Sunilkumar, D.; Cherian, R.M.; Thomas, S.S.; Nair, B.G. Resveratrol as a promising nutraceutical: Implications in gut microbiota modulation, inflammatory disorders, and colorectal cancer. Int. J. Mol. Sci. 2024, 25, 3370. [Google Scholar] [CrossRef] [PubMed]
- Metkar, S.K.; Udayakumar, S.; Girigoswami, A.; Girigoswami, K. Natural serine proteases and their applications in combating amyloid formation. ADMET DMPK 2024, 12, 797–820. [Google Scholar] [CrossRef] [PubMed]
- Girigoswami, A.; Ghosh, M.; Girigoswami, K. World scenario of earthworms’ prowess as a remedy to a spectrum of diseases—A glimpse on related nanoformulations. Tradit. Med. Res. 2025, 10, 23. [Google Scholar] [CrossRef]
- Cedillo-Cortezano, M.; Martinez-Cuevas, L.R.; López, J.A.M.; Barrera López, I.L.; Escutia-Perez, S.; Petricevich, V.L. Use of medicinal plants in the process of wound healing: A literature review. Pharmaceuticals 2024, 17, 303. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, S.; Tokarczyk, G. Lycopene in the prevention of cardiovascular diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Wani, A.K.; Akhtar, N.; Mir, T.u.G.; Singh, R.; Jha, P.K.; Mallik, S.K.; Sinha, S.; Tripathi, S.K.; Jain, A.; Jha, A.; et al. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 2023, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Meléndez, G.A.; Pérez-Hernández, R.A.; Chávez-Montes, A.; Castillo-Velázquez, U.; de Jesús Loera-Arias, M.; Montes-de-Oca-Saucedo, C.R.; Rodríguez-Rocha, H.; Contreras-Torres, F.F.; Saucedo-Cárdenas, O.; Soto-Domínguez, A. Nanoencapsulation of Extracts and Isolated Compounds of Plant Origin and Their Cytotoxic Effects on Breast and Cervical Cancer Treatments: Advantages and New Challenges. Toxicon 2024, 244, 107753. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muscat, J.E.; Chinchilli, V.M.; Behura, C.G. Trends in Cancer Incidence and Mortality in US Adolescents and Young Adults, 2016–2021. Cancers 2024, 16, 3153. [Google Scholar] [CrossRef]
- Han, B.; Zheng, R.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53. [Google Scholar] [CrossRef]
- Mohan, L. Plant-based drugs as an adjuvant to cancer chemotherapy. Altern. Med-Updat. 2020. [Google Scholar]
- Pathak, K.; Pathak, M.P.; Saikia, R.; Gogoi, U.; Sahariah, J.J.; Zothantluanga, J.H.; Samanta, A.; Das, A. Cancer chemotherapy via natural bioactive compounds. Curr. Drug Discov. Technol. 2022, 19, 4–23. [Google Scholar] [CrossRef]
- Roy, A.; Datta, S.; Bhatia, K.S.; Jha, P.; Prasad, R. Role of plant derived bioactive compounds against cancer. S. Afr. J. Bot. 2022, 149, 1017–1028. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv. 2020, 38, 107287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.S.; Kulanthaivel, L.; Hikku, G.S.; Saravanan, R.; Lakshmi, T.; Kirubhanand, C.; Karthikeyan, M.; Vijayalakshmi, P.; Subbaraj, G.K. Improved Antibacterial Activity of Water-Soluble Nanoformulated Kaempferol and Combretastatin Polyphenolic Compounds. Int. J. Polym. Sci. 2021, 2021, 5682182. [Google Scholar]
- Geeva; Narayan, S. Insight into the preparation of biopolymeric nanoparticles with lithium and their cellular uptake studies using PC 12 cells. Mater. Res. Innov. 2022, 26, 415–426. [Google Scholar] [CrossRef]
- Shunmugam, R.; Balusamy, S.R.; Kumar, V.; Menon, S.; Lakshmi, T.; Perumalsamy, H. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J. King Saud. Univ. Sci. 2021, 33, 101260. [Google Scholar] [CrossRef]
- Thirumalai, A.; Harini, K.; Pallavi, P.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Bile salt-mediated surface-engineered bilosome-nanocarriers for delivering therapeutics. Nanomed. J. 2024, 11, 1–12. [Google Scholar]
- Thirumalai, A.; Girigoswami, K.; Pallavi, P.; Harini, K.; Gowtham, P.; Girigoswami, A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull. Du. Cancer 2023, 110, 1288–1300. [Google Scholar] [CrossRef]
- Gowtham, P.; Girigoswami, K.; Prabhu, A.D.; Pallavi, P.; Thirumalai, A.; Harini, K.; Girigoswami, A. Hydrogels of alginate derivative-encased nanodots featuring carbon-coated manganese ferrite cores with gold shells to offer antiangiogenesis with multimodal imaging-based theranostics. Adv. Ther. 2024, 7, 2400054. [Google Scholar] [CrossRef]
- Janda, K.; Wojtkowska, K.; Jakubczyk, K.; Antoniewicz, J.; Skonieczna-Żydecka, K. Passiflora incarnata in neuropsychiatric disorders—A systematic review. Nutrients 2020, 12, 3894. [Google Scholar] [CrossRef]
- Kim, M.; Lim, H.-S.; Lee, H.-H.; Kim, T.-H. Role identification of Passiflora Incarnata Linnaeus: A mini review. J. Menopausal Med. 2017, 23, 156. [Google Scholar] [CrossRef]
- Patil, A.S. Exploring Passiflora incarnata L.: A medicinal plants secondary metabolites as antibacterial agent. J. Med. Plants Res. 2010, 4, 1496–1501. [Google Scholar]
- da Silva, M.H.R.; Cueva-Yesquén, L.G.; Júnior, S.B.; Garcia, V.L.; Sartoratto, A.; de Angelis, D.F.; de Angelis, D.A. Endophytic fungi from Passiflora incarnata: An antioxidant compound source. Arch. Microbiol. 2020, 202, 2779–2789. [Google Scholar] [CrossRef]
- Lee, J.; Jung, H.-Y.; Lee, S.I.; Choi, J.H.; Kim, S.-G. Effects of Passiflora incarnata Linnaeus on polysomnographic sleep parameters in subjects with insomnia disorder: A double-blind randomized placebo-controlled study. Int. Clin. Psychopharmacol. 2020, 35, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Christoffoli, M.T.; Bachesk, A.B.; Farah, G.J.; Ferreira, G.Z. Assessment of Passiflora incarnata L for conscious sedation of patients during the extraction of mandibular third molars: A randomized, split-mouth, double-blind, crossover study. Quintessence Int. 2021, 52, 868–878. [Google Scholar] [PubMed]
- Ma, W.D.; Zou, Y.P.; Wang, P.; Yao, X.H.; Sun, Y.; Duan, M.H.; Fu, Y.J.; Yu, B. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem. Toxicol. 2014, 70, 1–8. [Google Scholar] [CrossRef]
- Daqian, W.; Chuandong, W.; Xinhua, Q.; Songtao, A.; Kerong, D. Chimaphilin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines through insulin-like growth factor-I receptor (IGF-IR) signaling. Chem.-Biol. Interact. 2015, 237, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Deepika, B.; Pallavi, P.; Gowtham, P.; Girigoswami, A.; Girigoswami, K. Anticancer potential of nanoformulated extract of Passiflora incarnata leaves. Biocatal. Agric. Biotechnol. 2024, 57, 103109. [Google Scholar] [CrossRef]
- Shurfa, M.; Girigoswami, A.; Devi, R.S.; Harini, K.; Agraharam, G.; Deepika, B.; Pallavi, P.; Girigoswami, K. Combinatorial effect of Doxorubicin entrapped in Alginate-Chitosan hybrid polymer and Cerium oxide Nanocomposites on skin cancer management in mice. J. Pharm. Sci. 2023, 112, 2891–2900. [Google Scholar] [CrossRef] [PubMed]
- Harini, K.; Alomar, S.Y.; Vajagathali, M.; Manoharadas, S.; Thirumalai, A.; Girigoswami, K.; Girigoswami, A. Niosomal Bupropion: Exploring Therapeutic Frontiers through Behavioral Profiling. Pharmaceuticals 2024, 17, 366. [Google Scholar] [CrossRef] [PubMed]
- Kavya, J.; Amsaveni, G.; Nagalakshmi, M.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Silver nanoparticles induced lowering of BCl2/Bax causes Dalton’s Lymphoma tumour cell death in mice. J. Bionanoscience 2013, 7, 276–281. [Google Scholar] [CrossRef]
- Khairunnisa, K.; Karthik, D. Evaluation of in-vitro apoptosis induction, cytotoxic activity of Hymenodictyon excelsum (Roxb) Wall in Dalton’s lymphoma ascites (DLA) and lung fibroblast-Mouse L929 cell lines. J. Appl. Pharm. Sci. 2014, 4, 011–017. [Google Scholar]
- Ghosh, R.; Girigoswami, K.; Guha, D. Suppression of apoptosis leads to cisplatin resistance in V79 cells subjected to chronic oxidative stress. Ind. J. Biochem. Biophys. 2012, 49, 363–370. [Google Scholar]
- Natesan, S.; Badami, S.; Dongre, S.H.; Godavarthi, A. Antitumor activity and antioxidant status of the methanol extract of Careya arborea bark against Dalton’s lymphoma ascites-induced ascitic and solid tumor in mice. J. Pharmacol. Sci. 2007, 103, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med. 2013, 5, 1340–1348. [Google Scholar] [CrossRef]
- Thavamani, B.S.; Mathew, M.; Dhanabal, S. Anticancer activity of cissampelos pareira against dalton’s lymphoma ascites bearing mice. Pharmacogn. Mag. 2014, 10, 200. [Google Scholar] [PubMed]
- Sasikumar, V.; Govindan, S.; Rajendran, G.; Rajendran, A.; Ramani, P.; Pateiro, M.; Lorenzo, J.M. Protective effect of aqueous extract of Pleurotus eous against Dalton’s lymphoma ascites tumor in mice. J. Agric. Food Res. 2023, 13, 100638. [Google Scholar] [CrossRef]
- Ghosh, R.; Girigoswami, K. NADH dehydrogenase subunits are overexpressed in cells exposed repeatedly to H2O2. Mutat. Res. /Fundam. Mol. Mech. Mutagen. 2008, 638, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Sakthi Devi, R.; Girigoswami, A.; Meenakshi, S.; Deepika, B.; Harini, K.; Gowtham, P.; Girigoswami, K. Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study. ADMET DMPK 2024, 12, 177–192. [Google Scholar]
- Johnson, J.; Shanmugam, R.; Lakshmi, T. A review on plant-mediated selenium nanoparticles and its applications. J. Popul. Ther. Clin. Pharmacol. 2022, 28, e29–e40. [Google Scholar]
- Deepika, B.; Gowtham, P.; Raghavan, V.; Isaac, J.B.; Devi, S.; Kiran, V.; Mercy, D.J.; Sofini, P.S.S.; Harini, A.; Girigoswami, A.; et al. Harmony in nature’s elixir: A comprehensive exploration of ethanol and nano-formulated extracts from Passiflora incarnata leaves: Unveiling in vitro cytotoxicity, acute and sub-acute toxicity profiles in Swiss albino mice. J. Mol. Histol. 2024, 55, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.; Dannenfelser, R.M. In vitro hemolysis: Guidance for the pharmaceutical scientist. J. Pharm. Sci. 2006, 95, 1173–1176. [Google Scholar] [CrossRef]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot095505. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Devi, S.; Rana, V.S.; Mishra, B.B.; Kumar, J.; Ahluwalia, V. Delivery of phytochemicals by liposome cargos: Recent progress, challenges and opportunities. J. Microencapsul. 2019, 36, 215–235. [Google Scholar] [CrossRef]
- De Luca, M.; Tuberoso, C.I.G.; Pons, R.; García, M.T.; Morán, M.d.C.; Martelli, G.; Vassallo, A.; Caddeo, C. Ceratonia siliqua, L. Pod Extract: From Phytochemical Characterization to Liposomal Formulation and Evaluation of Behaviour in Cells. Antioxidants 2023, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Marfell, B.J.; Waterhouse, N.J. Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087205. [Google Scholar] [CrossRef]
- Adhvaryu, M.R.; Reddy, N.; Parabia, M.H. Antitumor activity of four Ayurvedic herbs in Dalton lymphoma ascites bearing mice and their short-term in vitro cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Dashora, N.; Chauhan, L. In vitro antioxidant and in vivo antitumor activity of Luffa acutangula against Dalton’s Lymphoma Ascites (DLA) cells bearing mice. J. Chem. Pharm. Res. 2015, 7, 940–945. [Google Scholar]
- Harikumar, K.B.; Kuttan, G.; Kuttan, R. Phyllanthus amarus Inhibits Cell Growth and Induces Apoptosis in Dalton’s Lymphoma Ascites Cells Through Activation of Caspase-3 and Downregulation of Bcl-2. Integr. Cancer Ther. 2009, 8, 190–194. [Google Scholar] [CrossRef]
- Vrânceanu, M.; Galimberti, D.; Banc, R.; Dragoş, O.; Cozma-Petruţ, A.; Hegheş, S.-C.; Voştinaru, O.; Cuciureanu, M.; Stroia, C.M.; Miere, D.; et al. The anticancer potential of plant-derived nutraceuticals via the modulation of gene expression. Plants 2022, 11, 2524. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.X.; Affendi, M.M.; Chong, P.P.; Lee, S.H. The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. Nutr. Cancer 2022, 74, 3058–3076. [Google Scholar] [CrossRef]
- Ahmed, F.; Ijaz, B.; Ahmad, Z.; Farooq, N.; Sarwar, M.B.; Husnain, T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. Phytomedicine 2020, 68, 153168. [Google Scholar] [CrossRef] [PubMed]
- Girigoswami, A.; Girigoswami, K. Cell Death Mechanisms Elicited by Multifactorial Stress Inducers-A Minireview. Coronaviruses 2023, 4, 70–82. [Google Scholar] [CrossRef]
Experimental Group | Treatment/Dose | No. of Mice and Sex |
---|---|---|
Group 1 (n = 6) | Control | N = 6 (Female) |
Group 2 (n = 6) | EEP 300 mg/kg | N = 6 (Female) |
Group 3 (n = 6) | N-EEP 150 mg/kg | N = 6 (Female) |
Group 4 (n = 6) | N-EEP 300 mg/kg | N = 6 (Female) |
Gene | Primer Sequence | PCR Amplification (49 Cycles) | ||
---|---|---|---|---|
Denaturation | Annealing | Extension | ||
GAPDH | 5′-TGCCTCCTGCACCACCAA-3′ (forward) 5′-GCCTGCTTCACCACCTTC-3′ (reverse) | 95 °C for 30 s | 49 °C for 30 s | 72 °C for 1 min |
Bax | 5′-GTTTCATCCAGGATCGAGCAG-3′ (forward) 5′-CATCTTCTTCCAGATGGT-3′ (reverse) | 95 °C for 30 s | 49 °C for 30 s | 72 °C for 1 min |
p53 | 5′-CGGAGGTCGAGACGCTG-3′ (forward) 5′-CACATGTACTTGTAGTGGATGGTGG-3′ (reverse) | 95 °C for 30 s | 57 °C for 30 s | 72 °C for 1 min |
Caspase-3 | 5′-GGAAACCAACAGTAGTCAGTCCT-3′ (forward) 5′-GCGAGTGAGAATGTGCATAAATTC-3′ (Reverse) | 95 °C for 30 s | 49 °C for 30 s | 72 °C for 1 min |
Groups | V79 | A375 |
---|---|---|
Control | 100% | 97.1 ± 0.9% |
EEP 100 μg/mL | 99.4 ± 0.23% | 44.6 ± 8.58% |
N-EEP 100 μg/mL | 100% | 13.5 ± 5.9% |
Sample | Percentage of Apoptotic Cells ± S.E. |
---|---|
Untreated control group | 11 ± 2 |
EEP (300 mg/kg) group | 36 ± 4 |
N-EEP (150 mg/kg) group | 52 ± 4 |
N-EEP (300 mg/kg) group | 69 ± 5 |
Treatment Groups | % Life Span Increase |
---|---|
EEP (300 mg/kg) | 8.05 ± 3.48 |
N-EEP (150 mg/kg) | 19.49 ± 2.18 |
N-EEP (300 mg/kg) | 38.55 ± 5.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deepika, B.; Janani, G.; Jessy Mercy, D.; Udayakumar, S.; Girigoswami, A.; Girigoswami, K. Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton’s Lymphoma Ascites-Bearing Swiss albino Mice. Pharmaceutics 2025, 17, 270. https://doi.org/10.3390/pharmaceutics17020270
Deepika B, Janani G, Jessy Mercy D, Udayakumar S, Girigoswami A, Girigoswami K. Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton’s Lymphoma Ascites-Bearing Swiss albino Mice. Pharmaceutics. 2025; 17(2):270. https://doi.org/10.3390/pharmaceutics17020270
Chicago/Turabian StyleDeepika, Balasubramanian, Gopalarethinam Janani, Devadass Jessy Mercy, Saranya Udayakumar, Agnishwar Girigoswami, and Koyeli Girigoswami. 2025. "Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton’s Lymphoma Ascites-Bearing Swiss albino Mice" Pharmaceutics 17, no. 2: 270. https://doi.org/10.3390/pharmaceutics17020270
APA StyleDeepika, B., Janani, G., Jessy Mercy, D., Udayakumar, S., Girigoswami, A., & Girigoswami, K. (2025). Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton’s Lymphoma Ascites-Bearing Swiss albino Mice. Pharmaceutics, 17(2), 270. https://doi.org/10.3390/pharmaceutics17020270