Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation
<p>Z Average, PDI, and ζ potential values of empty and drug-loaded NPs and LPHNPs, before and after lyophilization. The number above the histogram represents the PDI of the Z average.</p> "> Figure 2
<p>MePD release profile from LPHNPs (dashed line) and NPs@MePD (solid line), in SLF4 (black), DPBS (red), and ALF (blue).</p> "> Figure 3
<p>Cell viability % (MTS assay) on 16-HBE cells after 24 and 48 h of incubation with MePD, LPHNPs@MePD, and LPHNPs. The results are reported as the mean ± SD (n = 3).</p> "> Figure 4
<p>Evaluation of MePD, free or loaded into LPHNPs, and empty LPHNPs effects on 16-HBE cells as cytokine IL-6 e IL-8 production via ELISA test.</p> "> Figure 5
<p>SEM images depicting samples MPs_A, MPs_B, MPs_C, and MPs_D with magnifications of 500× (upper) and 3000× (down).</p> "> Figure 6
<p>Characteristics of the samples obtained via SD in terms of geometric diameter (d<sub>geo</sub>), bulk density (ρ<sub>bulk</sub>), tapped density (ρ<sub>tapped</sub>), aerodynamic diameter (d<sub>aer</sub>), and Hausner Index (H).</p> "> Figure 7
<p>SEM images depicting samples MPs_C1, MPs_C2, and NiM@MePD (containing LPHNPs at 0.25% <span class="html-italic">w</span>/<span class="html-italic">v</span>), with magnifications of 500× (upper) and 3000× (down).</p> "> Figure 8
<p>Geometric diameter (d<sub>geo</sub>), bulk density (ρb), tapped density (ρ<sub>tapped</sub>), aerodynamic diameter (d<sub>aer</sub>), and Hausner Index (H) of MPs_C1, MPs_C2 and NiM@MePD samples. MPs_C sample is reported for comparison.</p> "> Figure 9
<p>Deposition of MPs_C, MPs_C1, MPs_C2 and NiM@MePD samples on the stages of the ACI, after testing via Breezhaler<sup>®</sup> at a flow rate of 90 L/min.</p> "> Figure 10
<p>Transmittance at 650 nm of dispersions containing mucin alone, MPs_C1, NiM@MePD and LPHNPs@MePD samples (1 mg/mL), in water or in mucin dispersion at final concentration of 0.08% <span class="html-italic">w</span>/<span class="html-italic">v</span>.</p> "> Scheme 1
<p>Schematic representation of the Nano into Microparticle (NiM) production starting from hybrid nanoparticles (LPHNPs@MePD) and excipients (Mann, LEU, NAC), and characterization.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Empty and MePD-Loaded Polymeric Nanoparticles
2.3. Preparation of Empty and Me-PD-Loaded Lipid−Polymer Hybrid Nanoparticles
2.4. Characterization of Lipid−Polymer Hybrid Nanoparticles
2.4.1. Dimensional Analysis and ζ Potential Measurement
2.4.2. Drug Loading (DL%) Determination
2.4.3. Release Study
2.4.4. Cell Viability
2.4.5. ELISA Test
2.5. Microparticle Production and Characterization
2.5.1. Preparation of Spray-Dried Microparticles (MPs) and Nano into Microparticles (NiM)
2.5.2. Particle Morphology
2.5.3. Determination of Tapped Density (ρtapped), Aerodynamic Diameter (daer), and Hausner Index (H)
2.5.4. Measurement of Interactions with Mucin
2.5.5. Andersen Cascade Impactor (ACI) Analysis
3. Results and Discussion
3.1. Preparation and Characterization of Empty and MePD-Loaded Lipid–Polymer Hybrid Nanoparticles (LPHNPs)
3.2. Release Study
3.3. Biological Assays
3.4. Microparticle Preparation and Characterization
3.5. Nano into Micro (NiM) Production and Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Melani, A.S.; Croce, S.; Cassai, L.; Montuori, G.; Fabbri, G.; Messina, M.; Viani, M.; Bargagli, E. Systemic Corticosteroids for Treating Respiratory Diseases: Less Is Better, but… When and How Is It Possible in Real Life? Pulm. Ther. 2023, 9, 329–344. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Al-Gareeb, A.I.; Saad, H.M.; Al-kuraishy, H.M. COVID-19 and corticosteroids: A narrative review. Inflammopharmacology 2022, 30, 1189–1205. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, X.; Lin, F.; Li, W.; Zhao, Y.; Zhu, F.; Yang, H.; Rao, M.; Li, Y.; Liang, H.; et al. MiR-29a-3p Improves Acute Lung Injury by Reducing Alveolar Epithelial Cell PANoptosis. Aging Dis. 2022, 13, 899. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, J.; Yang, K.; Jiang, M.; Luo, J.; Chen, K.; Zhang, B. Effect of methylprednisolone in reducing severe COVID-19 and mortality in high-risk patients: A retrospective study. SAGE Open Med. 2024, 12, 20503121241276683. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Dai, L.; Lu, J.; Cheng, L.; Geng, Y.; Chen, M.; Chen, Q.; Wang, X.; Fröhlich, E. Efficacy and safety of methylprednisolone against acute respiratory distress syndrome: A systematic review and meta-analysis. Medicine 2021, 100, e25408. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; He, Q.; Wang, C.; Wang, B.; Zhou, P.; Dong, N.; Tong, Q. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct. Target Ther. 2020, 5, 57. [Google Scholar] [CrossRef]
- Ding, Y.; Lv, B.; Zheng, J.; Lu, C.; Liu, J.; Lei, Y.; Yang, M.; Wang, Y.; Li, Z.; Yang, Y.; et al. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J. Control. Release 2022, 341, 702–715. [Google Scholar] [CrossRef]
- Yue, L.; Yan, Y. Effects of methylprednisolone combined with advanced antibiotics and antiviral drugs on serum immunoglobulin and inflammatory factor levels in patients with viral pneumonia. Cell Mol. Biol. 2023, 69, 154–159. [Google Scholar] [CrossRef]
- Abdelkader, A.A.; Alsfouk, B.A.; Saleh, A.; Abdelrahim, M.E.A.; Saeed, H. Comparative Efficacy of Inhaled and Intravenous Corticosteroids in Managing COVID-19-Related Acute Respiratory Distress Syndrome. Pharmaceutics 2024, 16, 952. [Google Scholar] [CrossRef]
- Arber Raviv, S.; Alyan, M.; Egorov, E.; Zano, A.; Harush, M.Y.; Pieters, C.; Korach-Rechtman, H.; Saadya, A.; Kaneti, G.; Nudelman, I.; et al. Lung targeted liposomes for treating ARDS. J. Control. Release 2022, 346, 421–433. [Google Scholar] [CrossRef]
- Su, Y.; Huang, T.; Sun, H.; Lin, R.; Zheng, X.; Bian, Q.; Zhang, J.; Chen, S.; Wu, H.; Xu, D.; et al. High Targeting Specificity toward Pulmonary Inflammation Using Mesenchymal Stem Cell-Hybrid Nanovehicle for an Efficient Inflammation Intervention. Adv. Healthc. Mater. 2023, 12, 2300376. [Google Scholar] [CrossRef] [PubMed]
- Landzberg, E.; Keim, G.; Yehya, N. Inhaled Corticosteroids Use Before Hospitalization May Be Protective in Children With Direct Lung Injury. CHEST Crit. Care 2024, 2, 100058. [Google Scholar] [CrossRef] [PubMed]
- Reade Michael, C.; Milbrant Eric, B. Is there evidence to support a phase II trial of inhaled corticosteroids in the treatment of incipient and persistent ARDS? Crit. Care Resusc. 2007, 9, 276–285. [Google Scholar]
- Melani, A.S.; Croce, S.; Fabbri, G.; Messina, M.; Bargagli, E. Inhaled Corticosteroids in Subjects with Chronic Obstructive Pulmonary Disease: An Old, Unfinished History. Biomolecules 2024, 14, 195. [Google Scholar] [CrossRef]
- Lea, S.; Higham, A.; Beech, A.; Singh, D. How inhaled corticosteroids target inflammation in COPD. Eur. Respir. Rev. 2023, 32, 230084. [Google Scholar] [CrossRef]
- Yu, Y.; Ni, M.; Zheng, Y.; Huang, Y. Airway epithelial-targeted nanoparticle reverses asthma in inhalation therapy. J. Control. Release 2024, 367, 223–234. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Shao, Y.; He, D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023, 15, 2151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; D’Angelo, D.; Buttini, F.; Yang, M. Long-acting inhaled medicines: Present and future. Adv. Drug Deliv. Rev. 2024, 204, 115146. [Google Scholar] [CrossRef] [PubMed]
- Inapagolla, R.; Guru, B.R.; Kurtoglu, Y.E.; Gao, X.; Lieh-Lai, M.; Bassett, D.J.P.; Kannan, R.M. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int. J. Pharm. 2010, 399, 140–147. [Google Scholar] [CrossRef]
- Liu, C.; Xi, L.; Liu, Y.; Mak, J.C.W.; Mao, S.; Wang, Z.; Zheng, Y. An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment. ACS Nano 2023, 17, 11626–11644. [Google Scholar] [CrossRef]
- Triolo, D.; Craparo, E.F.; Porsio, B.; Fiorica, C.; Giammona, G.; Cavallaro, G. Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf. B Biointerfaces 2017, 151, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Craparo, E.F.; Drago, S.E.; Costabile, G.; Ferraro, M.; Pace, E.; Scaffaro, R.; Ungaro, F.; Cavallaro, G. Sustained-Release Powders Based on Polymer Particles for Pulmonary Delivery of Beclomethasone Dipropionate in the Treatment of Lung Inflammation. Pharmaceutics 2023, 15, 1248. [Google Scholar] [CrossRef] [PubMed]
- Craparo, E.F.; Cabibbo, M.; Scialabba, C.; Casula, L.; Lai, F.; Cavallaro, G. Rapamycin-based inhaled therapy for potential treatment of COPD-related inflammation: Production and characterization of aerosolizable nano into micro (NiM) particles. Biomater. Sci. 2024, 12, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Craparo, E.F.; Cabibbo, M.; Scialabba, C.; Giammona, G.; Cavallaro, G. Inhalable Formulation Based on Lipid-Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules 2022, 23, 3439–3451. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Famta, P.; Raghuvanshi, R.S.; Singh, S.B.; Srivastava, S. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci. Commun. 2022, 46, 100570. [Google Scholar] [CrossRef]
- Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a nextgeneration drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef]
- Cavallaro, G.; Craparo, E.F.; Sardo, C.; Lamberti, G.; Barba, A.A.; Dalmoro, A. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Int. J. Pharm. 2015, 495, 719–727. [Google Scholar] [CrossRef]
- Craparo, E.F.; Licciardi, M.; Conigliaro, A.; Palumbo, F.S.; Giammona, G.; Alessandro, R.; De Leo, G.; Cavallaro, G. Hepatocyte-targeted fluorescent nanoparticles based on a polyaspartamide for potential theranostic applications. Polymer 2015, 70, 257–270. [Google Scholar] [CrossRef]
- Cappelli, A.; Grisci, G.; Paolino, M.; Razzano, V.; Giuliani, G.; Donati, A.; Bonechi, C.; Mendichi, R.; Boccia, A.C.; Licciardi, M.; et al. Polybenzofulvene derivatives bearing dynamic binding sites as potential anticancer drug delivery systems. J. Mater. Chem. B 2015, 3, 361–374. [Google Scholar] [CrossRef]
- Ciranni Signoretti, E.; Valvo, L.; Savella, A.L.; Cavina, G. Purity evaluation of 6wmethylprednisolone acetate by HPLC. J. Pharm. Biomed. Anal. 1993, 11, 587–593. [Google Scholar] [CrossRef]
- Fuster, J.; Negro, S.; Salama, A.; Fernández-Carballido, A.; Marcianes, P.; Boeva, L.; Barcia, E. HPLC-UV method development and validation for the quantification of ropinirole in new PLGA multiparticulate systems: Microspheres and nanoparticles. Int. J. Pharm. 2015, 491, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolut. Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, L. Methylprednisolone up-regulates annexin A1 (ANXA1) to inhibit the inflammation, apoptosis and oxidative stress of cigarette smoke extract (CSE)-induced bronchial epithelial cells, a chronic obstructive pulmonary disease in vitro model, through the formyl peptide receptor 2 (FPR2) receptors and the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) pathway. Bioengineered 2022, 13, 4028–4038. [Google Scholar] [CrossRef]
- Craparo, E.F.; Drago, S.E.; Quaglia, F.; Ungaro, F.; Cavallaro, G. Development of a Novel Rapamycin Loaded Nano- into Micro-Formulation for Treatment of Lung Inflammation. Drug Deliv. Transl. Res. 2022, 12, 1859–1872. [Google Scholar] [CrossRef]
- Healy, A.M.; McDonald, B.F.; Tajber, L.; Corrigan, O.I. Characterisation of excipient-free nanoporous microparticles (NPMPs) of bendroflumethiazide. Eur. J. Pharm. Biopharm. 2008, 69, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Scialabba, C.; Craparo, E.F.; Cabibbo, M.; Emanuele Drago, S.; Cavallaro, G. Exploiting inhalable microparticles incorporating hybrid polymer-lipid nanoparticles loaded with Iloprost manages lung hyper-inflammation. Int. J. Pharm. 2024, 666, 124813. [Google Scholar] [CrossRef]
- Party, P.; Klement, M.L.; Szabó-Révész, P.; Ambrus, R. Preparation and Characterization of Ibuprofen Containing Nano-Embedded-Microparticles for Pulmonary Delivery. Pharmaceutics 2023, 15, 545. [Google Scholar] [CrossRef]
- Weng, D.; Yin, Z.F.; Chen, S.S.; He, X.; Li, N.; Chen, T.; Qiu, H.; Zhao, M.M.; Wu, Q.; Zhou, N.Y.; et al. Development and assessment of the efficacy and safety of human lung-targeting liposomal methylprednisolone crosslinked with nanobody. Drug Deliv. 2021, 28, 1419–1431. [Google Scholar] [CrossRef]
- Li, N.; Weng, D.; Wang, S.M.; Zhang, Y.; Chen, S.S.; Yin, Z.F.; Zhai, J.; Scoble, J.; Williams, C.C.; Chen, T.; et al. Surfactant protein-a nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv. 2017, 24, 1770–1781. [Google Scholar] [CrossRef]
- Czock, D.; Keller, F.; Rasche, F.M.; Häussler, U. Pharmacokinetics and Pharmacodynamics of Systemically Administered Glucocorticoids. Clin. Pharmacokinet. 2005, 44, 61–98. [Google Scholar] [CrossRef]
- Mancini, L.; Paolantoni, M.; Schoubben, A.; Ricci, M. Development of spray-dried N-acetylcysteine dry powder for inhalation. Int. J. Pharm. 2023, 631, 122550. [Google Scholar] [CrossRef] [PubMed]
- Zillen, D.; Beugeling, M.; Hinrichs, W.L.J.; Frijlink, H.W.; Grasmeijer, F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr. Opin. Colloid Interface Sci. 2021, 56, 101497. [Google Scholar] [CrossRef]
Sample | Mann (wt/v%) | LEU (wt/v%) | NAC (wt/v%) | Pump (%) | Aspirator (%) |
---|---|---|---|---|---|
MPs_A | 6 | 2 | 2 | 10 | 100 |
MPs_B | 8 | 2 | 2 | 10 | 100 |
MPs_C | 10 | 2 | 2 | 10 | 100 |
MPs_D | 12 | 2 | 2 | 10 | 100 |
MPs_C1 | 10 | 2 | 2 | 7 | 100 |
MPs_C2 | 10 | 2 | 2 | 10 | 70 |
NiM@MePD | 10 | 2 | 2 | 7 | 100 |
ACI Stages | Cut-Off Diameter at 90L/min (µm) |
---|---|
−2 | 8 |
−1 | 6.5 |
0 | 5.2 |
1 | 3.5 |
2 | 2.6 |
3 | 1.7 |
4 | 1 |
MOC | 0.43 |
Sample | EP% | IP% | FPF% | MMAD (μm) | GSD (μm) |
---|---|---|---|---|---|
MPs_C | 48.6 ± 1.7 | 56.4 ± 1.7 | 58.3 ± 1.6 | 4.3 ± 0.6 | 1.6 ± 0.3 |
MPs_C1 | 57.8 ± 2.5 | 38.9 ± 1.6 | 62.3 ± 0.3 | 3.9 ± 0.1 | 1.8 ± 0.1 |
MPs_C2 | 42.6 ± 2.5 | 51.4 ± 3.2 | 52.7 ± 2.7 | 4.7 ± 0.3 | 1.5 ± 0.2 |
NiM@MePD | 34.2 ± 0.7 | 41.9 ± 2.2 | 56.7 ± 0.1 | 4.4 ± 0.1 | 1.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scialabba, C.; Craparo, E.F.; Bonsignore, S.; Cabibbo, M.; Cavallaro, G. Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation. Pharmaceutics 2024, 16, 1454. https://doi.org/10.3390/pharmaceutics16111454
Scialabba C, Craparo EF, Bonsignore S, Cabibbo M, Cavallaro G. Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation. Pharmaceutics. 2024; 16(11):1454. https://doi.org/10.3390/pharmaceutics16111454
Chicago/Turabian StyleScialabba, Cinzia, Emanuela Fabiola Craparo, Sofia Bonsignore, Marta Cabibbo, and Gennara Cavallaro. 2024. "Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation" Pharmaceutics 16, no. 11: 1454. https://doi.org/10.3390/pharmaceutics16111454