Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management
"> Figure 1
<p>Synthetic route of HA-L-PNIPAM. Amidation reaction (<b>A</b>) and copper-free azide-DBCO click chemistry reaction (<b>B</b>).</p> "> Figure 2
<p>Formation process of nanoparticles upon heating for HA-L-PNIPAM 0.5 (PDI from 0.273 to 0.011) (<b>A</b>), HA-L-PNIPAM 0.25 (PDI from 0.464 to 0.212) (<b>C</b>), HA-L-PNIPAM 0.1 (PDI from 0.265 to 0.169) (<b>E</b>) and HA-PNIPAM (PDI from 0.276 to 0.008) (<b>G</b>). Their size and the derived count rate are presented as a function of temperature (<span class="html-italic">n</span> = 3; ±sd). Scanning electron micrograph of HA-L-PNIPAM 0.5 (<b>B</b>), HA-L-PNIPAM 0.25 (<b>D</b>), HA-L-PNIPAM 0.1 (<b>F</b>) and HA-PNIPAM (<b>H</b>) of samples. Scale bar = 1 µm. Magnification 20,000×. Voltage = 15.0 kV. Concentrations 0.001% <span class="html-italic">w/v</span>.</p> "> Figure 3
<p>Temperature dependence of the storage modulus (G′) and loss modulus (G″) at a frequency of 0.5 Hz of Ostenil<sup>®</sup>, HA-L-PNIPAM 0.5 1%, 5%, and 7% (<span class="html-italic">n</span> = 3; ± sd) (<b>A</b>,<b>B</b>). Storage modulus G′ (<b>C</b>) and loss modulus G″ (<b>D</b>) of Ostenil<sup>®</sup> and HA-L-PNIPAM 0.5 5% mixed with equal volumes of equine synovial fluid and equine synovial fluid alone at 22 °C and 37 °C at a frequency of 0.5 Hz. Highly statistically significative differences (i.e., <span class="html-italic">p</span> < 0.0001) were evidenced by four asterisks (“****”) (<span class="html-italic">n</span> = 3; ±sd) (<b>C</b>,<b>D</b>). Picture of Ostenil<sup>®</sup>, HA-L-PNIPAM 0.5 1%, 5%, and 7% at 25 °C and 37 °C after a 180 ° flip of the vial, and 15 s delay (<b>E</b>). Force in Newtons (N) required to extrude Ostenil<sup>®</sup>, HA-L-PNIPAM 0.5 1%, 5%, and 7% as a function of the stroke distance of the piston in a syringe with a 23G needle (distance %) at 22 °C (<span class="html-italic">n</span> = 2; ±sd) (<b>F</b>).</p> "> Figure 4
<p>Ostenil<sup>®</sup> and HA-L-PNIPAM 0.5 5% storage modulus (G′) and loss modulus (G″), normalized to initial values, as function of time at 0.5 Hz and 37 °C, after addition of 40 µL of hyaluronidase (100 U/mL) (<b>A</b>,<b>B</b>) (<span class="html-italic">n</span> = 3; ±sd). After an addition of 40 µL H<sub>2</sub>O<sub>2</sub> (30% <span class="html-italic">w/w</span>) (<b>C</b>,<b>D</b>) (<span class="html-italic">n</span> = 3; ±sd). As a control condition, 40 µL of PBS buffer were added to 400 µL of the sample, ratio was made at each timepoint.</p> "> Figure 5
<p>The cellular viability (WST-1 mitochondrial activity assay) of human fibroblast-like synoviocytes (HFLS) incubated with HA-L-PNIPAM 0.5 5%, HA-L-PNIPAM 0.5 5% digested by hyaluronidase, hyaluronic acid 0.71% (2200–2400 kDa), Sulfo DBCO-PEG4-NH<sub>2</sub> 0.21%, PNIPAM-N<sub>3</sub> 4.08% (15,000 Da) and Ostenil<sup>®</sup> after 24 h and 72 h. No statistically significant differences (<span class="html-italic">p</span> > 0.05) with the control (cell culture medium) were observed for all conditions (<span class="html-italic">n</span> = 4; ±sd).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HA-L-PNIPAM 0.5, HA-L-PNIPAM 0.25 and HA-L-PNIPAM 0.1
2.3. Synthesis of HA-PNIPAM
2.4. Size and Morphology of the Self-Assembled Nanoparticles
2.5. In Vitro and Ex Vivo Rheological Behavior
2.6. Injectability of Formulations
2.7. Enzymatic Degradation Assays
2.8. Degradation by Induction of Oxidative Stress
2.9. Product Sterilization
2.10. In Vitro Cytotoxicity Assay on Human Fibroblast-like Synoviocytes
2.11. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of the HA Derivatives
3.2. Rheology and Injectability
3.3. In Vitro Degradation, Sterilization and Cytotoxicity
3.4. HA-L-PNIPAM Design Consideration for Future Applications
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Da | Daltons |
DLS | Dynamic light scattering |
DS | Degree of substitution |
EDC | N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide |
G′ | The storage/elastic moduli |
G″ | The loss/viscous moduli |
HA | Hyaluronic acid |
HFLS | Human Fibroblast-like Synoviocytes |
HMW | High molecular weight |
H2O2 | Hydrogen peroxide |
LCST | Lower critical solution temperature |
LVE | Linear viscoelastic region |
MW | Molecular weight |
NHS | N-hydroxysuccinimide |
Pa | Pascals |
Pa·s | Pascal seconds |
PBS | Phosphate-buffered saline |
OA | Osteoarthritis |
PNIPAM | poly(N-isopropylacrylamide) |
ROS | Reactive oxygen species |
SEM | Scanning electron microscopy |
References
- Balazs, E.A.; Watson, D.; Duff, I.F.; Roseman, S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. Arthritis Rheum. 1967, 10, 357–376. [Google Scholar] [CrossRef]
- Lin, W.; Klein, J. Recent Progress in Cartilage Lubrication. Adv. Mater. 2021, 33, e2005513. [Google Scholar] [CrossRef] [PubMed]
- Horton, W.E., Jr.; Bennion, P.; Yang, L. Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J. Musculoskelet. Neuronal Interact. 2006, 6, 379–381. [Google Scholar] [PubMed]
- Balazs, E.A. The physical properties of synovial fluid and the special role of hyaluronic acid. In Disorders of the Knee, 2nd ed.; Helfet, A., Ed.; J.B. Lippincott & Co.: Philadelphia, PA, USA, 1982; pp. 61–74. [Google Scholar]
- Balazs, E.A. Viscosupplementation for treatment of osteoarthritis: From initial discovery to current status and results. Surg. Technol. Int. 2004, 12, 278–289. [Google Scholar] [PubMed]
- Shewale, A.R.; Barnes, C.L.; Fischbach, L.A.; Ounpraseuth, S.; Painter, J.T.; Martin, B.C. Comparative effectiveness of low, moderate and high molecular weight hyaluronic acid injections in delaying time to knee surgery. J. Arthroplast. 2017, 32, 2952–2957. [Google Scholar] [CrossRef] [PubMed]
- Balazs, E.A.; Denlinger, J.L. Viscosupplementation: A new concept in the treatment of Osteoarthritis. J. Rheumatol. Suppl. 1993, 39, 3–9. [Google Scholar] [PubMed]
- Bowman, S.; Awad, M.E.; Hamrick, M.W.; Hunter, M.; Fulzele, S. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin. Transl. Med. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testa, G.; Giardina, S.M.C.; Culmone, A.; Vescio, A.; Turchetta, M.; Cannavò, S.; Pavone, V. Intra-Articular Injections in Knee Osteoarthritis: A Review of Literature. J. Funct. Morphol. Kinesiol. 2021, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Arrich, J.; Piribauer, F.; Mad, P.; Schmid, D.; Klaushofer, K.; Müllner, M. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: Systematic review and meta-analysis. Can. Med. Assoc. J. 2005, 172, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, S.; Blank, S.; Rutjes, A.W.S.; Shang, A.; King, E.A.; Dieppe, P.A.; Jüni, P.; Trelle, S. Hylan versus hyaluronic acid for osteoarthritis of the knee: A systematic review and meta-analysis. Arthritis Rheumastism 2007, 57, 1410–1418. [Google Scholar] [CrossRef]
- Witteveen, A.G.; Hofstad, C.J.; Kerkhoffs, G.M. Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C.; Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61, 1303–1313. [Google Scholar] [CrossRef]
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Soltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef] [PubMed]
- Conrozier, T.; Mathieu, P.; Rinaudo, M. Mannitol preserves the viscoelastic properties of hyaluronic acid in an in vitro model of oxidative stress. Rheumatol. Ther. 2014, 1, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Assaf, S.; Hawkins, C.L.; Parsons, B.J.; Davies, M.J.; Phillips, G.O. Identification of radicals from hyaluronan (hyaluronic acid) and cross-linked derivatives using electron paramagnetic resonance spectroscopy. Carbohydr. Polym. 1990, 38, 17–22. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyaluronic acid and related materials. Free. Radic. Biol. Med. 1996, 21, 275–290. [Google Scholar] [CrossRef]
- Banerji, S.; Wright, A.J.; Noble, M.; Mahoney, D.J.; Campbell, I.D.; Day, A.J.; Jackson, D.G. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate–protein interaction. Nat. Struct. Mol. Biol. 2007, 14, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Schanté, C.; Zubera, G.; Herlinb, C.; Vandammea, T.F. Synthesis of N-alanyl-hyaluronamide with high degree of substitution for enhanced resistance to hyaluronidase-mediated digestion. Carbohydr. Polym. 2011, 86, 747–752. [Google Scholar] [CrossRef]
- Maudens, P.; Meyer, S.; Seemayer, C.A.; Jordan, O.; Allémann, E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 2018, 10, 1845–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schanté, C.; Zubera, G.; Herlinb, C.; Vandammea, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Borzacchiello, A.; Mayol, L.; Schiavinato, A.; Ambrosio, L. Effect of hyaluronic acid amide derivative on equine synovial fluid viscoelasticity. J. Biomed. Mater. Res. Part A 2010, 92, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Lin, S.; Zhang, K.; Dong, C.; Wu, T.; Huang, H.; Yan, X.; Zhang, L.; Li, G.; Bian, L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 2017, 53, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Porcello, A.; Fernandez, P.G.; Jeannerat, A.; Peneveyre, C.; Abdel-Sayed, P.; Scaletta, C.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.; et al. Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics 2021, 13, 2196. [Google Scholar] [CrossRef] [PubMed]
- Cooperstein, M.A.; Canavan, H.E. Assessment of cytotoxicity of (N-isopropylacrylamide) and Poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 2013, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuanantanondh, P.; Grecov, D.; Kwok, E. Rheological Study of Viscosupplements and Synovial Fluid in Patients with Osteoarthritis. J. Med. Biol. Eng. 2010, 33, 12–16. [Google Scholar]
- Salgado, C.; Morin, H.; Coriolano de Aquino, N.; Neff, L.; Quintino da Rocha, C.; Vilegas, W.; Marcourt, L.; Wolfender, J.-L.; Jordan, O.; Ferreira Queiroz, E.; et al. In Vitro Anti-Inflammatory Activity in Arthritic Synoviocytes of A. brachypoda Root Extracts and Its Unusual Dimeric Flavonoids. Molecules 2020, 25, 5219. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.S.; Svechkarev, D.; Bapat, A.; Patil, P.; Hollingsworth, M.A.; Mohs, A.M. Sulfation Modulates the Targeting Properties of Hyaluronic Acid to P-Selectin and CD44. ACS Biomater. Sci. Eng. 2020, 6, 3585–3598. [Google Scholar] [CrossRef] [PubMed]
- Heida, T.; Otto, O.; Biedenweg, D.; Hauck, N.; Thiele, J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel’s Physicochemical and Mechanical Properties. Polymers 2020, 12, 1760. [Google Scholar] [CrossRef] [PubMed]
- Terzic, V.; Pousse, G.; Méallet-Renault, R.; Grellier, P.; Dubois, J. Dibenzocyclooctynes: Effect of Aryl Substitution on Their Reactivity toward Strain-Promoted Alkyne–Azide Cycloaddition. J. Org. Chem. 2019, 84, 8542–8551. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, Y.; Tong, J.; Zhang, L.; Wei, Y.; Tian, M. Recent advances in thermo-sensitive hydrogels for drug delivery. J. Mater. Chem. B 2021, 7, 2979–2992. [Google Scholar] [CrossRef]
- Huerta-Ángeles, G.; Nešporová, K.; Ambrožová, G.; Kubala, L.; Velebný, V. An effective translation: The development of hyaluronan-based medical products from the physicochemical, and preclinical aspects. Front. Bioeng. Biotechnol. 2018, 6, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, Y.; Kusamori, K.; Nishikawa, M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019, 24, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, S.; Yee, N.A.; Wu, K.; Zakharian, M.; Mahmoodi, A.; Royzen, M.; Mejía Oneto, J.M. SQ3370 Activates Cytotoxic Drug via Click Chemistry at Tumor and Elicits Sustained Responses in Injected and Non-Injected Lesions. Adv. Ther. 2021, 4, 2000243. [Google Scholar] [CrossRef] [PubMed]
- Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005, 26, 3055–3064. [Google Scholar] [CrossRef] [PubMed]
- Molliard, S.G.; Bétemps, J.B.; Hadjab, B.; Topchian, D.; Micheels, P.; Salomon, D. Key rheological properties of hyaluronic acid fillers: From tissue integration to product degradation. Plast. Aesthet. Res. 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Grognuz, A.; Scaletta, C.; Farron, A.; Pioletti, D.P.; Raffoul, W.; Applegate, L.A. Stability enhancement using hyaluronic acid gels for delivery of human fetal progenitor tenocytes. Cell Med. 2016, 8, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, A.; Abdel-Sayed, P.; Grognuz, A.; Scaletta, C.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.S.; Raffoul, W.; Kronen, P.; Nuss, K.; et al. Industrial Development of Standardized Fetal Progenitor Cell Therapy for Tendon Regenerative Medicine: Preliminary Safety in Xenogeneic Transplantation. Biomedicines 2021, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- Porcello, A.; Laurent, A.; Hirt-Burri, N.; Abdel-Sayed, P.; de Buys Roessingh, A.; Raffoul, W.; Applegate, L.A.; Jordan, O.; Allémann, E. Thermoresponsive hyaluronan-based hydrogels for the formulation of standardize transplants in tendon regenerative medicine. In Proceedings of the 14th Swiss Pharma Science Day 2021, Bern, Switzerland, 25 August 2021. [Google Scholar]
Viscosupplement | HA Content (mg/mL) | Temperature (°C) | Frequency: 0.5 Hz | |
---|---|---|---|---|
G′ (Pa) | G″ (Pa) | |||
Ostenil® | 10.0 | 25 | 8.24 ± 0.60 | 13.01 ± 0.75 |
37 | 5.35 ± 0.46 | 10.30 ± 0.64 | ||
HA-L-PNIPAM 0.5 7% | 9.9 | 25 | 2.12 ± 2.27 | 3.37 ± 1.97 |
37 | 150.39 ± 31.90 | 62.60 ± 15.88 | ||
HA-L-PNIPAM 0.5 5% | 7.1 | 25 | 0.01 ± 0.01 | 0.22 ± 0.01 |
37 | 29.11 ± 3.01 | 11.97 ± 3.10 | ||
HA-L-PNIPAM 0.5 1% | 1.4 | 25 | 0.02 ± 0.01 | 0.03 ± 0.01 |
37 | 0.38 ± 0.15 | 0.27 ± 0.02 |
Viscosupplement | HA Content (mg/mL) | Sulfo DBCO-PEG4-NH2 Content (mg/mL) | PNIPAM-N3 Content (mg/mL) |
---|---|---|---|
HA-L-PNIPAM 0.5 5% | 7.1 | 2.1 | 40.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcello, A.; Gonzalez-Fernandez, P.; Jordan, O.; Allémann, E. Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics 2022, 14, 659. https://doi.org/10.3390/pharmaceutics14030659
Porcello A, Gonzalez-Fernandez P, Jordan O, Allémann E. Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics. 2022; 14(3):659. https://doi.org/10.3390/pharmaceutics14030659
Chicago/Turabian StylePorcello, Alexandre, Paula Gonzalez-Fernandez, Olivier Jordan, and Eric Allémann. 2022. "Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management" Pharmaceutics 14, no. 3: 659. https://doi.org/10.3390/pharmaceutics14030659
APA StylePorcello, A., Gonzalez-Fernandez, P., Jordan, O., & Allémann, E. (2022). Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics, 14(3), 659. https://doi.org/10.3390/pharmaceutics14030659