Study on the Optimization of an Extraction Process of Two Triterpenoid Saponins in the Root of Rosa laevigata Michx. and Their Protective Effect on Acute Lung Injury
"> Figure 1
<p>Chemical structural formula of kajiichigoside F1 and rosamultin.</p> "> Figure 2
<p>Effects of various extraction techniques on the concentrations of kajiichigoside F1 and rosamultin in the root of <span class="html-italic">R. laevigata</span> (<span class="html-italic">n</span> = 3).</p> "> Figure 3
<p>Effects of varying ethanol concentrations on the levels of kajiichigoside F1 and rosamultin in the root of <span class="html-italic">R</span>. <span class="html-italic">laevigata</span> (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>Effects of different solid–liquid ratios on the contents of kajiichigoside F1 and rosamultin in the root of <span class="html-italic">R. laevigata (n</span> = 3).</p> "> Figure 5
<p>Effects of different extraction time on the content of kajiichigoside F1 and rosamultin in the root of <span class="html-italic">R. laevigata</span> (<span class="html-italic">n</span> = 3).</p> "> Figure 6
<p>Effects of different extraction times on the content of kajiichigoside F1 and rosamultin in the root of <span class="html-italic">R. laevigata</span> (<span class="html-italic">n</span> = 3).</p> "> Figure 7
<p>The response surface diagram illustrates the influence of various factors on the extraction of kajiichigoside F1 and rosamultin from the root of <span class="html-italic">R. laevigata</span>. Utilizing Design-Expert 8.0.6 software, the response surface analysis was conducted to examine the interactions among these factors, and the corresponding response surface curves were generated. A steeper response surface indicates a more pronounced effect on the extraction rate. Specifically, the diagrams depict (<b>a</b>) the impact of ethanol volume fraction and solid–liquid ratio on the total content of kajiichigoside F1 and rosamultin; (<b>b</b>) the influence of extraction time and ethanol volume fraction; (<b>c</b>) the effects of the number of extraction times and ethanol volume fraction; (<b>d</b>) the interaction between extraction time and solid–liquid ratio; (<b>e</b>) the combined effects of the number of extraction times and solid–liquid ratio; and (<b>f</b>) the relationship between the number of extraction time and extraction times on the total content of kajiichigoside F1 and rosamultin.</p> "> Figure 7 Cont.
<p>The response surface diagram illustrates the influence of various factors on the extraction of kajiichigoside F1 and rosamultin from the root of <span class="html-italic">R. laevigata</span>. Utilizing Design-Expert 8.0.6 software, the response surface analysis was conducted to examine the interactions among these factors, and the corresponding response surface curves were generated. A steeper response surface indicates a more pronounced effect on the extraction rate. Specifically, the diagrams depict (<b>a</b>) the impact of ethanol volume fraction and solid–liquid ratio on the total content of kajiichigoside F1 and rosamultin; (<b>b</b>) the influence of extraction time and ethanol volume fraction; (<b>c</b>) the effects of the number of extraction times and ethanol volume fraction; (<b>d</b>) the interaction between extraction time and solid–liquid ratio; (<b>e</b>) the combined effects of the number of extraction times and solid–liquid ratio; and (<b>f</b>) the relationship between the number of extraction time and extraction times on the total content of kajiichigoside F1 and rosamultin.</p> "> Figure 8
<p>Effects of kajiichigoside F1 and rosamultin on lung index in LPS-induced ALI mice. The lung index was analyzed by calculating the wet weight/body weight ratio of lung tissue in ALI mice. Results are expressed as mean ± standard deviation (S.D.). * means compared with the model group: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001; # means compared with the normal group: # <span class="html-italic">p</span> < 0.05, ### <span class="html-italic">p</span> < 0.001.</p> "> Figure 9
<p>Effects of kajiichigoside F1 and rosamultin on the pathomorphology of lung tissue in LPS-induced ALI mice (HE staining, ×100). Representative images of lung tissue pathology were obtained by performing H&E staining on each group of mice. Con: normal group; LPS: model group; Dex: dexamethasone group; kajiichigoside F1: low-, medium-, and high-dose group; rosamultin: low-, medium-, and high-dose group.</p> "> Figure 10
<p>The effect of kajiichigoside F1 and rosamultin on the inhibition of pro-inflammatory cytokine TNF-α in lung tissue of LPS-induced ALI mice. Results are expressed as mean ± standard deviation (S.D.). * means compared with the model group: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001; # means compared with the normal group: # <span class="html-italic">p</span> < 0.05.</p> "> Figure 11
<p>The effect of kajiichigoside F1 and rosamultin on the inhibition of pro-inflammatory cytokine IL-6 in lung tissue of LPS-induced ALI mice. Results are expressed as mean ± standard deviation (S.D.). * means compared with the model group: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001; # means compared with the normal group: # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, ### <span class="html-italic">p</span> < 0.001.</p> "> Figure 12
<p>The inhibitory effect of kajiichigoside F1 on the expression of NF-κB pathway protein in LPS-induced ALI mice. Results are expressed as mean ± standard deviation (S.D.). * means compared with the model group: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001; # means compared with the normal group: ## <span class="html-italic">p</span> < 0.01, ### <span class="html-italic">p</span> < 0.001.</p> "> Figure 13
<p>The inhibitory effect of rosamultin on the expression of NF-κB pathway proteins in LPS-induced ALI mice. Results are expressed as mean ± standard deviation (S.D.). * means compared with the model group: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001; # means compared with the normal group: ### <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Experimental Results from Single-Factor Optimization of the Extraction Process
2.2. The Box–Behnken Response Surface Methodology Was Employed to Optimize the Extraction Process
2.3. An Evaluation of the Optimal Extraction Methodology and Its Subsequent Validation
2.4. Identification of Compound Structures
- Compound 1
- Compound 2
2.5. Lung Index Determination Results
2.6. Effect on the Pathomorphology of Lung Tissue in LPS-Induced ALI Mice
2.7. Effect on the Content of Inflammatory Factors in Lung Tissue of LPS-Induced ALI Mice
2.8. Effect on the Expression of NF-κB Pathway Protein in Lung Tissue of LPS-Induced ALI Mice
3. Discussion
4. Materials and Methods
4.1. Single Factor Experiment
4.2. Box–Behnken Response Surface Experiment
4.3. Preparation of Kajiichigoside F1 and Rosamultin
4.4. Structure Identification of Compounds
4.5. Animal Model Construction and Administration of Drugs
4.6. Determination of Lung Index
4.7. HE Staining to Observe Histopathological Changes in the Lung Tissue
4.8. ELISA Reagent for the Detection of the Expression of Inflammatory Factors in Lung Tissue
4.9. Western Blot Method
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Zou, S.S.; Wang, B.; Lin, H.Q. Targeting immunometabolism against acute lung injury. Clin. Immunol. 2023, 249, 109289. [Google Scholar]
- Zhu, Y.H.; Han, Q.Q.; Wang, L.; Wang, B.Y.; Chen, J.S.; Cai, B.R.; Wu, C.; Zhu, X.L.; Liu, F.G.; Han, D.; et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. J. Ethnopharmacol. 2023, 301, 115763. [Google Scholar] [CrossRef] [PubMed]
- Saugata, D.; Zhu, Y.; Han, Y.H.; Almuntashiri, S.; Wang, X.Y.; Zhang, D. Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J. Clin. Med. 2023, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Cui, Y.F.; Feng, Y.B.; Jiao, F.P.; Jia, L. Lentinus edodes polysaccharides alleviate acute lung injury by inhibiting oxidative stress and inflammation. Molecules 2022, 27, 7328. [Google Scholar] [CrossRef]
- Li, Z.H.; Pan, H.T.; Yang, J.H.; Chen, D.J.; Wang, Y.; Zhang, H.; Cheng, Y.Y. Xuanfei Baidu formula alleviates im-paired mitochondrial dynamics a Ind activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. Phytomedicine 2023, 108, 154545. [Google Scholar] [CrossRef]
- Xia, J.Y.; Li, J.H.; Deng, M.S.; Yin, F.; Liu, J.H.; Wang, J.M. Diosmetin alleviates acute lung injur-y caused by lipopolysaccharide by targeting barrier function. Inflammopharmacology 2023, 31, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.G.; Pan, W.; Yang, X.L.; Long, F.Y.; Zhou, J.; Liao, Y.; Wang, M.H. RBM3 increases cell survival but disr-upts tight junction of microvascular endothelial cells in acute lung injury. Surg. Res. 2021, 261, 226–235. [Google Scholar] [CrossRef]
- National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: Volume IV; China Pharmaceutical Science and Technology Press: Beijing, China, 2020; p. 555.
- OuYang, L.M.; Huang, S.C.; Huang, X.L.; Huang, Y. Studies on Pharmacodynamics Activities of Antiinflammatory and Analgesia, Hemostasis and Inhibit Peristalsis of Aqueous Extract of Root and Stem of Rosa cymosa. Mod. Chin. Med. 2012, 14, 4–8. [Google Scholar]
- Wen, H.B.; Cao, Y.Z.; Wu, Y.L.; Zhang, Q.J.; Leng, C.Q. Study on Antioxidant Activity of Total Flavonoids from Rosa laevigata Michx. Nat. Prod. Res. Dev. 2014, 26, 1127–1131. [Google Scholar]
- Wang, K.C.; Liu, Y.C.; El-Shazly, M.; Shi, S.P.; Du, Y.Q.; Xu, Y.M.; Lin, H.Y. The antioxidant from ethanolic extract of Rosa cymose fruits activates phosphatase and tensin homolog in vitro and in vivo: A new insight on its antileukemic effect. Int. J. Mol. Sci. 2019, 20, 1935. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.F.; Li, Z.; Wu, Y.Q.; Li, Z.C.; Li, J.Y.; Li, Y.X.; Wei, J.X.; Zhang, Y.L.; Li, L.Z. Kaji-Ichigoside F1 and rosamultin protect vascular endothelial cells against Hypoxia-Induced apoptosis via the PI3K/AKT or ERK1/2 signaling pathway. Oxid. Med. Cell. Longev. 2020, 17, 6837982. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, J.Y.; Li, L.Z.; Zhang, Y.L.; Gong, H.Y.; Ying, C. Protective effect of rosamultin against H2O2-Induced oxidative stress and apoptosis in H9c2 cardiomyocytes. Oxid. Med. Cell. Longev. 2018, 7, 8415610. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Liu, H.; Li, J.Y.; Wei, J.X.; Li, X.; Zhang, Y.L.; Li, L.Z.; Zhang, X.Z. Rosamultin attenuates acute hypobaric Hypoxia-Induced bone injuries by regulation of sclerostin and its downstream signals. High Alt. Med. Biol. 2020, 21, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, H.W.; Jiang, Y.; Yan, Y.G.; Cao, R. Inhibitory Effects of Schisandra chinensis, Rosa laevigata and Cornus officinal on Glycometabolism in Type 2 Diabetes Model Rats. Nat. Prod. Res. Dev. 2018, 30, 568–574. [Google Scholar]
- Jung, H.J.; Nam, J.H.; Choi, J.; Lee, K.T.; Park, H.J. 19α-Hydroxyursane-Type Triterpenoids: Antin ociceptive Anti-inflammatory Principles of the Roots of Rosa rugosa. Biol. Pharm. Bull. 2005, 28, 101–104. [Google Scholar] [CrossRef]
- Jong, C.P.; Sang, C.K.; Jong, M.H.; Seong, H.C.; Kab, Y.L.; Jong, W.C. Anti-Hepatotoxic Effects of Rosa rugosa Root and Its Compound, Rosamultin, in Rats Intoxicated with Bromobenzene. J. Med. Food 2004, 7, 436–441. [Google Scholar]
- Liu, Y.; Cheng, L.; He, Q.Q.; Yan, Z.H.; Kong, D.Y. Chemical constituents from roots of Potentilla anserine. Chin. Tradit. Herb. Drugs 2014, 45, 2742–2747. [Google Scholar]
- Li, Q.J.; Nan, Y.; Qin, J.J.; Yang, Y.; Hao, X.J.; Yang, X.S. Chemical constituents from medical and edible plants of Rosa roxburghii. China J. Chin. Mater. Medica 2016, 41, 451–455. [Google Scholar]
- Ding, Y.; Huang, Y.L.; Liu, J.L.; Wang, L.; Yan, X.J.; Li, D.P. Chemical constituents from the roots of Rosa laevigata. Guihaia 2017, 37, 255–259. [Google Scholar]
- Huang, X.Y.; Ma, G.X.; Chen, L.; Zhou, J.M.; Zhong, X.Q.; Zhou, Y.L.; Lu, G.R.; Su, Z.L.; Yang, J.S.; Yuan, J.Q. Chemical constituents from roots of Rosa cymosa. Chin. Tradit. Herb. Drugs 2018, 49, 2978–2983. [Google Scholar]
- Yuan, J.Q.; Yang, X.Z.; Miao, J.H.; Tang, C.P.; Ke, C.Q.; Zhang, J.B.; Ma, X.J.; Ye, Y. New Triterpene Glucosides from the Roots of Rosa laevigata Michx. Molecules 2008, 13, 2229. [Google Scholar] [CrossRef]
- Hou, M.T.; Chen, F.X.; Jiao, J.R.; Pei, F.L.; Li, Y.S.; Zhang, W.D. Multi-response optimization of ejector for proton exchange membrane fuel cell anode systems by the response surface methodology and desirability function approach. Int. J. Green Energy 2024, 21, 1910–1927. [Google Scholar] [CrossRef]
- Jin, Y.; Qiao, Q.; Dong, L.M.; Cao, M.K.; Li, P.; Liu, A.Z.; Sun, R. Response surface optimization for water-assisted extraction of two saponins from paris polyphylla var. yunnanensis leaves. Molecules 2024, 29, 1652. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, D.Y.; Ma, C.J.; Wang, R.X.; Wang, W.L. Free radical scavenging effect and immunomodulatory activity of total saponins extract of ginseng fibrous roots. Molecules 2024, 29, 2770. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, L.Q.; Wang, L.; Zhou, L.; Yang, X.S. Chemical constituents and their anti-inflammatory activities from rhizome of ethnic medicine Rosa roxburghii. Guihaia 2022, 42, 1531–1541. [Google Scholar]
- Zhu, Y.S.; Peng, X.R.; Fan, S.S.; Sun, Y.R.; Zhang, X. Research Progress on the Role of Inflammation and Oxidative Stress in Acute Lung Injury. Hans J. Biomed. 2024, 14, 48–55. [Google Scholar] [CrossRef]
- Chen, F.J.; Wang, L.; Jin, F.; Li, L.Q.; Wang, T.; Gao, M.; Li, L.L.; Wang, Y.; Lou, Z.S.; Yang, J.; et al. Neuroprotection of kaji-ichigoside F1 via the BDNF/Akt/mTOR signaling pathways against NMDA-induced neurotoxicity. Int. J. Mol. Sci. 2022, 23, 16150. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Niu, M.X.; Luo, S.Y.; Lv, L.J.; Quan, X.X.; Wang, C.; Meng, Z.Y.; Yuan, J.Q. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem.-Biol. Interact. 2024, 393, 110938. [Google Scholar] [CrossRef]
- He, L.; Liu, N.; Wang, K.X.; Zhang, L.; Li, D.; Wang, Z.X.; Xu, G.Q.; Liu, Y.L.; Xu, Q.M. Rosamultin from Potentilla anserine L. exhibits nephroprotection and antioxidant activity by regulating the reactiveoxygen species/C/EBP homologous protein signaling pathway. Phytother. Res. PTR 2021, 35, 6343–6358. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yin, L.; Zhou, M.J.; Shao, F.; Shi, Q.; Liu, Q.H. Effect of Euphorbia helioscopia Alcohol Extract on MAPK/NF-κB Inflammation Pathway on Mice with Acute Lung Injury Induced by LPS. Chin. J. Exp. Tradit. Med. Formulae 2020, 26, 46–51. [Google Scholar]
- Mangalmurti, N.; Christopher, A. Hunter Cytokine Storms: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar] [CrossRef]
- Lehmann, C.; Alizadeh-Tabrizi, N.; Hall, S.; Faridi, S.; Euodia, I.; Holbein, B.; Zhou, J.; Chappe, V. Anti-Inflammatory Effects ofthe Iron Chelator, DIBI, in Experimental Acute Lung Injury. Molecules 2022, 13, 4036. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Peng, Z.L.; Wang, J. Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation 2021, 44, 1507–1517. [Google Scholar] [CrossRef]
- Li, C.L.; Liu, M.G.; Deng, L.; Luo, D.D.; Ma, R.F.; Lu, Q. Oxyberberine ameliorates TNBS-induced colitis in rats through suppressing inflammation and oxidative stress via Keap1/Nrf2/NF-κB signaling pathways. Phytomedicine 2023, 116, 154899. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xing, R.Q.; Zhang, Y.J.; Fu, P.; Li, J.; Fan, Y. Box-Behnken Response Surface Methodology for Optimization of Extraction Process of Corosolic Acid and Maslinic Acid from Bupleuri Radix. Chin. J. Inf. Tradit. Chin. Med. 2020, 27, 94–98. [Google Scholar]
Test Number | A (%) | B (g/mL) | C (min) | D (Times) | Measured Extraction Rate (mg/g) | ||
---|---|---|---|---|---|---|---|
Kajiichigoside F1 | Rosamultinin | Total Content | |||||
1 | 40 (−1) | 20 (0) | 80 (−1) | 2 | 2.6970 | 3.3980 | 6.0950 |
2 | 60 (0) | 20 | 80 | 1 (−1) | 3.0546 | 3.7447 | 6.7993 |
3 | 80 (+10) | 20 | 120 (+1) | 2 (0) | 3.8276 | 4.5521 | 8.3797 |
4 | 60 | 20 | 100 (0) | 2 | 3.5124 | 4.2764 | 7.7889 |
5 | 60 | 15 (−1) | 120 | 2 | 3.4672 | 4.2044 | 7.6716 |
6 | 60 | 20 | 100 | 2 | 3.4277 | 4.2007 | 7.6284 |
7 | 60 | 15 | 100 | 1 | 2.5424 | 3.0978 | 5.6402 |
8 | 40 | 20 | 120 | 2 | 3.0748 | 3.8292 | 6.9041 |
9 | 60 | 20 | 120 | 1 | 2.7575 | 3.3597 | 6.1173 |
10 | 80 | 20 | 100 | 3 (+1) | 3.9361 | 4.6863 | 8.6224 |
11 | 80 | 20 | 100 | 1 | 3.3322 | 4.0450 | 7.3772 |
12 | 40 | 20 | 100 | 3 | 3.1416 | 3.9086 | 7.0503 |
13 | 60 | 15 | 100 | 3 | 3.4384 | 4.1653 | 7.6037 |
14 | 60 | 20 | 100 | 2 | 3.1751 | 3.8574 | 7.0326 |
15 | 60 | 15 | 80 | 2 | 3.3843 | 4.1233 | 7.5076 |
16 | 60 | 25 (+1) | 100 | 3 | 3.7045 | 4.5394 | 8.2439 |
17 | 80 | 20 | 80 | 2 | 3.8197 | 4.5587 | 8.3784 |
18 | 60 | 25 | 100 | 1 | 3.0029 | 3.6433 | 6.6462 |
19 | 40 | 20 | 100 | 1 | 2.7268 | 3.3923 | 6.1191 |
20 | 60 | 20 | 120 | 3 | 3.6350 | 4.3975 | 8.0325 |
21 | 60 | 25 | 120 | 2 | 3.7158 | 4.5409 | 8.2566 |
22 | 60 | 20 | 100 | 2 | 3.7083 | 4.4912 | 8.1995 |
23 | 80 | 25 | 100 | 2 | 3.6813 | 4.3265 | 8.0078 |
24 | 40 | 25 | 100 | 2 | 2.9064 | 3.6017 | 6.5081 |
25 | 60 | 20 | 80 | 3 | 3.7359 | 4.5478 | 8.2836 |
26 | 80 | 15 | 100 | 2 | 3.5781 | 4.2103 | 7.7884 |
27 | 60 | 20 | 100 | 2 | 3.5965 | 4.3477 | 7.9442 |
28 | 60 | 25 | 80 | 2 | 3.7914 | 4.6303 | 8.4216 |
29 | 40 | 15 | 100 | 2 | 3.1011 | 3.8798 | 6.9809 |
Source of Variance | Quadratic Sum | Degree of Freedom | Mean Square | F Ratio | p Ratio |
---|---|---|---|---|---|
model | 16.34 | 14 | 1.17 | 5.54 | 0.0014 |
A | 6.60 | 1 | 6.60 | 31.30 | <0.0001 |
B | 0.70 | 1 | 0.70 | 3.31 | 0.0904 |
C | 0.00 | 1 | 0.00 | 0.01 | 0.9391 |
D | 6.96 | 1 | 6.96 | 33.01 | <0.0001 |
AB | 0.12 | 1 | 0.12 | 0.57 | 0.4634 |
AC | 0.16 | 1 | 0.16 | 0.77 | 0.3938 |
AD | 0.02 | 1 | 0.02 | 0.12 | 0.7374 |
BC | 0.03 | 1 | 0.03 | 0.13 | 0.7254 |
BD | 0.03 | 1 | 0.03 | 0.16 | 0.6964 |
CD | 0.05 | 1 | 0.05 | 0.22 | 0.6461 |
A2 | 0.33 | 1 | 0.33 | 1.57 | 0.2303 |
B2 | 0.06 | 1 | 0.06 | 0.27 | 0.6143 |
C2 | 0.07 | 1 | 0.07 | 0.33 | 0.5752 |
D2 | 1.23 | 1 | 1.23 | 5.84 | 0.0299 |
residual error | 2.95 | 14 | 0.21 | ||
lack of fit | 2.18 | 10 | 0.22 | 1.14 | 0.4887 |
error | 0.77 | 4 | 0.19 | ||
total deviation | 19.29 | 28 |
Kajiichigoside F1 | Rosamultin | ||
---|---|---|---|
Position | Experimental Value | Position | Experimental Value |
C-1 | 42.7 | C-1 | 48.2 |
C-2 | 66.4 | C-2 | 69.6 |
C-3 | 78.8 | C-3 | 84.6 |
C-4 | 39.4 | C-4 | 39.2 |
C-5 | 48.1 | C-5 | 56.7 |
C-6 | 19.7 | C-6 | 19.7 |
C-7 | 33.8 | C-7 | 34.1 |
C-8 | 40.9 | C-8 | 41.3 |
C-9 | 47.1 | C-9 | 48.6 |
C-10 | 40.5 | C-10 | 40.5 |
C-11 | 25.0 | C-11 | 24.8 |
C-12 | 124.8 | C-12 | 129.5 |
C-13 | 144.4 | C-13 | 139.7 |
C-14 | 42.7 | C-14 | 42.7 |
C-15 | 29.3 | C-15 | 29.6 |
C-16 | 26.5 | C-16 | 26.5 |
C-17 | 48.1 | C-17 | 49.4 |
C-18 | 55.0 | C-18 | 55.0 |
C-19 | 73.0 | C-19 | 73.6 |
C-20 | 41.5 | C-20 | 42.9 |
C-21 | 28.5 | C-21 | 27.2 |
C-22 | 39.4 | C-22 | 38.3 |
C-23 | 29.4 | C-23 | 29.3 |
C-24 | 22.5 | C-24 | 17.5 |
C-25 | 17.0 | C-25 | 16.6 |
C-26 | 17.8 | C-26 | 17.7 |
C-27 | 25.2 | C-27 | 24.7 |
C-28 | 178.6 | C-28 | 178.5 |
C-29 | 28.5 | C-29 | 27.1 |
C-30 | 17.4 | C-30 | 17.1 |
C-1’ | 95.8 | C-1’ | 95.8 |
C-2’ | 73.9 | C-2’ | 73.9 |
C-3’ | 78.4 | C-3’ | 78.3 |
C-4’ | 71.1 | C-4’ | 71.2 |
C-5’ | 78.7 | C-5’ | 78.6 |
C-6’ | 62.4 | C-6’ | 62.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.; Deng, Q.; Huang, Y.; Jia, X.; Xie, F.; Zhou, B.; Gao, H.; Wu, Y.; Yuan, J. Study on the Optimization of an Extraction Process of Two Triterpenoid Saponins in the Root of Rosa laevigata Michx. and Their Protective Effect on Acute Lung Injury. Pharmaceuticals 2025, 18, 253. https://doi.org/10.3390/ph18020253
Mo J, Deng Q, Huang Y, Jia X, Xie F, Zhou B, Gao H, Wu Y, Yuan J. Study on the Optimization of an Extraction Process of Two Triterpenoid Saponins in the Root of Rosa laevigata Michx. and Their Protective Effect on Acute Lung Injury. Pharmaceuticals. 2025; 18(2):253. https://doi.org/10.3390/ph18020253
Chicago/Turabian StyleMo, Jingya, Qiaoyu Deng, Yuanyuan Huang, Xuegong Jia, Fengfeng Xie, Bei Zhou, Hongwei Gao, Yanchun Wu, and Jingquan Yuan. 2025. "Study on the Optimization of an Extraction Process of Two Triterpenoid Saponins in the Root of Rosa laevigata Michx. and Their Protective Effect on Acute Lung Injury" Pharmaceuticals 18, no. 2: 253. https://doi.org/10.3390/ph18020253
APA StyleMo, J., Deng, Q., Huang, Y., Jia, X., Xie, F., Zhou, B., Gao, H., Wu, Y., & Yuan, J. (2025). Study on the Optimization of an Extraction Process of Two Triterpenoid Saponins in the Root of Rosa laevigata Michx. and Their Protective Effect on Acute Lung Injury. Pharmaceuticals, 18(2), 253. https://doi.org/10.3390/ph18020253