Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene
<p>Chromatogram of GC-MS analysis of CS-EO.</p> "> Figure 2
<p>Effect of CS-EO on cell viability. RAW 264.7 cells were stimulated with LPS (1 μg/mL) and incubated in the presence or absence of increasing concentrations (25–200 µg/mL) of CS-EO for 24 h.</p> "> Figure 3
<p>PGE<sub>2</sub> as a modulator of immune dynamics in inflammation and resolution.</p> "> Figure 4
<p>Effect of CS-EO and limonene on LPS-induced nitric oxide (NO) and prostaglandin E2 (PEG2) production. (<b>A</b>,<b>B</b>) RAW 264.7 cells were stimulated with LPS (1 μg/mL) and incubated in the presence or absence of increasing concentrations (25–200 µg/mL) of CS-EO and limonene (25–200 µg/mL) for 24 h. The nitrite concentration in the culture media was determined by the Griess reagent assay. (<b>C</b>,<b>D</b>) PGE<sub>2</sub> levels in the culture media were measured by a commercially available assay kit. Data are reported as mean ± SD of three independent experiments. # <span class="html-italic">p</span> < 0.001 indicates a significant difference between the control and LPS-only treated groups. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 show significant differences between the LPS-alone and CS-EO or limonene treatment groups.</p> "> Figure 5
<p>Cell viability of MCF-7, HCT-15, HepG2 and PBMC cells after 72 h of treatment with CS-EO, its respective major compound limonene and cisplatin (positive control) using MTT test.</p> "> Figure 6
<p>Schematic illustration of the possible mechanisms of action of CS-EO and limonene.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of Volatile Compounds
2.2. Anti-Inflammatory Activity
2.3. Anticancer Activity
2.4. Antioxidant Activity
2.5. Dermatoprotective Potential
3. Materials and Methods
3.1. Plant Material and EO Isolation
3.2. Chemical Profile
3.3. Modulation of Inflammation in LPS-Treated RAW 264.7 Cells
3.3.1. Cell Culture
3.3.2. Cell Viability Assessment
3.4. Determination of Inflammatory Mediator
3.5. Cytotoxic Activity: Cell Viability by MTT Assay
3.6. Antioxidant Assays
3.6.1. DPPH Assay
3.6.2. FRAP Assay
3.6.3. β-Carotene Test
3.7. Dermatoprotective Effect
3.7.1. Tyrosinase Assay
3.7.2. Elastase Assay
3.8. Statistical Analysis
4. Conclusions
5. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Hachlafi, N.; Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Nouioura, G.; Abdallah, E.M.; Abdnim, R.; Bnouham, M.; Al-Mijalli, S.H.; Naceiri Mrabti, H.; et al. Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking. Separations 2024, 11, 199. [Google Scholar] [CrossRef]
- Batbat, A.; Habbadi, K.; El Hachlafi, N.; El Allaoui, N.; Yahyaoui, H.; Ferioun, M.; El Ghdaich, C.; Benbouazza, A.; Boudkhili, M.; Greche, H. Unveiling Germination Conditions for Origanum Elongatum: Strategic Insights into Temperature, Salinity, and pH for Agricultural Propagation and Conservation Management. Ecol. Front. 2024, S2950509724001163. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Arino, A.; Djenane, D. Study of Antifungal, Anti-Aflatoxigenic, Antioxidant Activity and Phytotoxicity of Algerian Citrus limon Var. Eureka and Citrus sinensis Var. Valencia Essential Oils. J. Essent. Oil Bear. Plants 2018, 21, 345–361. [Google Scholar] [CrossRef]
- Bozova, B.; Gölükcü, M.; Turgutoğlu, E. The Effect of Hydrodistillation Times and Cold Pressing on Yield and Composition of Sweet Orange (Citrus sinensis) Peel Essential Oil. Hortic. Stud. 2024, 41, 22–27. [Google Scholar] [CrossRef]
- Nehela, Y.; Killiny, N. Gamma-Aminobutyric Acid Accumulation Contributes to Citrus sinensis Response against ‘Candidatus liberibacter Asiaticus’ via Modulation of Multiple Metabolic Pathways and Redox Status. Plants 2023, 12, 3753. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Xie, B.J.; Zhang, Y.; Zhang, Y.; Fan, G.; Yao, X.L.; Pan, S.Y. Characterization of Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 2008, 13, 1333–1344. [Google Scholar] [CrossRef]
- Zahr, S.; Zahr, R.; El Hajj, R.; Khalil, M. Phytochemistry and Biological Activities of Citrus sinensis and Citrus Limon: An Update. J. Herb. Med. 2023, 41, 100737. [Google Scholar] [CrossRef]
- Hamuel Doughari, J.; Jamila Bazza, M. Phytochemistry, GC-MS Analysis, Antioxidant and Antibacterial Potentials of Limonene Isolated from Pericarp of Citrus sinensis. Int. J. Microbiol. Biotechnol. 2020, 5, 22. [Google Scholar] [CrossRef]
- Sutrisno, S.; Pribadi, R.A.; Marfu’ah, S.; Putri, D.E.K. Essential Oil from Sweet Orange (Citrus sinensis) for Solid Perfumes Preparation; AIP Publishing: Tangerang, Indonesia, 2024; p. 020002. [Google Scholar]
- Shirisha, G.; Mandava, K.; Batchu, U.R.; Thammana, K.R.; Turpu, V.L. Antitumor and Antioxidant Effects of Flavonoid Fraction of Citrus sinensis Peel Extract. Pharmacogn. J. 2019, 11, 57–63. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, C.S.; Li, S.; Jin, H.; Ho, C.; Patel, T. Monodemethylated Polymethoxyflavones from Sweet Orange (Citrus sinensis) Peel Inhibit Growth of Human Lung Cancer Cells by Apoptosis. Mol. Nutr. Food Res. 2009, 53, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Filho, H.G.D.; Dos Santos, J.F.; Carvalho, M.T.B.; Picot, L.; Fruitier-Arnaudin, I.; Groult, H.; Quintans-Júnior, L.J.; Quintans, J.S.S. Anticancer Activity of Limonene: A Systematic Review of Target Signaling Pathways. Phytother. Res. 2021, 35, 4957–4970. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos C Braz, J.; De Carvalho, F.O.; Vasconcelos C Meneses, D.; Calixto, F.A.F.; Santana, H.S.R.; Almeida, I.B.; De Aquino, L.A.G.; De Souza Araújo, A.A.; Serafini, M.R. Mechanism of Action of Limonene in Tumor Cells: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2021, 27, 2956–2965. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, Y.M.; Adu-Frimpong, M.; Xu, X.; Yu, J. Biochemical Significance of Limonene and Its Metabolites: Future Prospects for Designing and Developing Highly Potent Anticancer Drugs. Biosci. Rep. 2018, 38, BSR20181253. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-Limonene Exhibits Antitumor Activity by Inducing Autophagy and Apoptosis in Lung Cancer. OncoTargets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Wei, C.-C.; Huang, J.; Pan, M.-H.; Shahidi, F.; Ho, C.-T. Anti-Inflammatory Effects of Polymethoxyflavones from Citrus Peels: A Review. J. Food Bioact. 2018, 3, 76–86. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Wang, S.; Gao, Y.; Jin, F. Molecular Mechanism of the Anti-Inflammatory Effects of Plant Essential Oils: A Systematic Review. J. Ethnopharmacol. 2023, 301, 115829. [Google Scholar] [CrossRef]
- Pérez, G.S.; Zavala, S.M.; Arias, G.L.; Ramos, L.M. Anti-Inflammatory Activity of Some Essential Oils. J. Essent. Oil Res. 2011, 23, 38–44. [Google Scholar] [CrossRef]
- Sadiq, I.Z. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr. Mol. Med. 2023, 23, 13–35. [Google Scholar] [CrossRef]
- Nunes, P.M.P.; Silva, C.B.D.; Paula, C.D.S.; Smolarek, F.F.; Zeviani, W.M.; Chaves, S.C.; Lorini, F.; Dias, J.D.F.G.; Miguel, O.G.; Zanin, S.M.W.; et al. Residues of Citrus sinensis (L.) Osbeck as Agents That Cause a Change in Antioxidant Defense in Plants. Braz. J. Pharm. Sci. 2015, 51, 479–493. [Google Scholar] [CrossRef]
- Abrego-Guandique, D.M.; Bonet, M.L.; Caroleo, M.C.; Cannataro, R.; Tucci, P.; Ribot, J.; Cione, E. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci. 2023, 13, 1468. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Front. Plant Sci. 2017, 8, 953. [Google Scholar] [CrossRef] [PubMed]
- El Aboubi, M.; Ben Hdech, D.; Bikri, S.; Benayad, A.; El Magri, A.; Aboussaleh, Y.; Aouane, E.M. Chemical Composition of Essential Oils of Citrus limon Peel from Three Moroccan Regions and Their Antioxidant, Anti-Inflammatory, Antidiabetic and Dermatoprotective Properties. J. Herbmed. Pharmacol. 2022, 12, 118–127. [Google Scholar] [CrossRef]
- Uroojunnisa, M.L.; Maddala, M. Potential of Tamarindus Indica and Citrus sinensis Methanolic Extracts in Managing Tribolium castaneum. Int. J. Entomol. Res. 2024, 9, 113–116. [Google Scholar]
- Devaramane, R.; Ramesh, K.B.; Singh, N.; Meena, P.N.; Chander, S. Population Dynamics of Citrus Leaf Miner and Bark Eating Caterpillars on Sweet Orange (Citrus sinensis) Using ICT-Based Pest Surveillance. J. Entomol. Res. 2024, 48, 250–255. [Google Scholar] [CrossRef]
- Bhandari, D.P.; Chaudhary, P.; Upadhyaya, S.R.; Ranjitkar, R.; Satyal, R.; Adhikari, A.; Satyal, P.; Parajuli, N. Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower. Horticulturae 2024, 10, 566. [Google Scholar] [CrossRef]
- Mohammed, I.O.; Alrasheid, A.A.; Hussein Ayoub, S.M. GC-MS Analysis and Study of the Antimicrobial Activity of Citrus Paradisi, Citrus Aurantifolia, and Citrus sinensis Peel Essential Oils as Hand Sanitizer. Int. J. Microbiol. 2024, 2024, 4957712. [Google Scholar] [CrossRef]
- Manzur, M.; Luciardi, M.C.; Blázquez, M.A.; Alberto, M.R.; Cartagena, E.; Arena, M.E. Citrus sinensis Essential Oils an Innovative Antioxidant and Antipathogenic Dual Strategy in Food Preservation against Spoliage Bacteria. Antioxidants 2023, 12, 246. [Google Scholar] [CrossRef]
- Hamdan, M.; Jaradat, N.; Al-Maharik, N.; Ismail, S.; Qadi, M. Chemical Composition, Cytotoxic Effects and Antimicrobial Activity of Combined Essential Oils from Citrus meyeri, Citrus paradise, and Citrus sinensis Leaves. Ind. Crops Prod. 2024, 210, 118096. [Google Scholar] [CrossRef]
- Ngan, T.T.K.; Nguyen, O.B.; Muoi, N.V.; Truc, T.T.; My, V.T.N. Chemical Composition and Antibacterial Activity of Orange (Citrus sinensis) Essential Oils Obtained by Hydrodistillation and Solvent Free Microwave Extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012023. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Fikri-Benbrahim, K.; Al-Mijalli, S.H.; Elbouzidi, A.; Jeddi, M.; Abdallah, E.M.; Assaggaf, H.; Bouyahya, A.; Alnasser, S.M.; Attar, A.; et al. Tetraclinis Articulata (Vahl) Mast. Essential Oil as a Promising Source of Bioactive Compounds with Antimicrobial, Antioxidant, Anti-Inflammatory and Dermatoprotective Properties: In Vitro and in Silico Evidence. Heliyon 2024, 10, e23084. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Hachlafi, N.E.; Al-Mijalli, S.H.; Jeddi, M.; Elbouzidi, A.; Abdallah, E.M.; Flouchi, R.; Assaggaf, H.; Qasem, A.; Zengin, G.; et al. Phytochemical Profile, Assessment of Antimicrobial and Antioxidant Properties of Essential Oils of Artemisia Herba-Alba Asso., and Artemisia Dracunculus L.: Experimental and Computational Approaches. J. Mol. Struct. 2023, 1294, 136479. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakrim, S.; Chamkhi, I.; Taha, D.; El Omari, N.; El Mneyiy, N.; El Hachlafi, N.; El-Shazly, M.; Khalid, A.; Abdalla, A.N. Bioactive Substances of Cyanobacteria and Microalgae: Sources, Metabolism, and Anticancer Mechanism Insights. Biomed. Pharmacother. 2024, 170, 115989. [Google Scholar] [CrossRef]
- Assaggaf, H.; Jeddi, M.; Mrabti, H.N.; Ez-zoubi, A.; Qasem, A.; Attar, A.; Goh, B.H.; Tan, S.L.; Bouyahya, A.; Goh, K.W.; et al. Design of Three-Component Essential Oil Extract Mixture from Cymbopogon Flexuosus, Carum Carvi, and Acorus Calamus with Enhanced Antioxidant Activity. Sci. Rep. 2024, 14, 9195. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.; El Hachlafi, N.; El Fadili, M.; Benkhaira, N.; Al-Mijalli, S.H.; Kandsi, F.; Abdallah, E.M.; Ouaritini, Z.B.; Bouyahya, A.; Lee, L.-H.; et al. Antimicrobial, Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities of a Chemically Characterized Essential Oil from Lavandula Angustifolia Mill.: In Vitro and in Silico Investigations. Biochem. Syst. Ecol. 2023, 111, 104731. [Google Scholar] [CrossRef]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The Role of Oxidative Stress during Inflammatory Processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Mazaleuskaya, L.L.; Ricciotti, E. Druggable Prostanoid Pathway. In Druggable Prostanoid Pathway; Springer: Cham, Switzerland, 2020; pp. 29–54. [Google Scholar]
- Yu, L.; Yan, J.; Sun, Z. D-Limonene Exhibits Anti-Inflammatory and Antioxidant Properties in an Ulcerative Colitis Rat Model via Regulation of iNOS, COX-2, PGE2 and ERK Signaling Pathways. Mol. Med. Rep. 2017, 15, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Anandakumar, P.; Kamaraj, S.; Vanitha, M.K. D-limonene: A Multifunctional Compound with Potent Therapeutic Effects. J. Food Biochem. 2021, 45, e13566. [Google Scholar] [CrossRef]
- Matuka, T.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical Composition and in Vivo Anti-Inflammatory Activity of Essential Oils from Citrus sinensis (L.) Osbeck Growing in South Africa. J. Essent. Oil Bear. Plants 2020, 23, 638–647. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Bakare, S.B. Chemical Composition and Anticancer Activity of the Essential Oil Extracted from Fresh Orange Peels of Citrus sinensis. Mens Agit. 2022, 17, 82–86. [Google Scholar]
- Saengha, W.; Karirat, T.; Buranrat, B.; Katisart, T.; Ling, N.; Luang-In, V. Cytotoxicity and Antiproliferative Activity of Essential Oils from Lemon, Wild Orange and Petitgrain against MCF-7, HepG2 and HeLa Cancer Cells. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12713. [Google Scholar] [CrossRef]
- Sekhar, K.C.; Rajanikanth, A.; Bobby, N.; Kanala, J.R. Anticancer Potential of D-Limonene and Hispolon against Colon Cancer Cell Lines. Curr. Trends Biotechnol. Pharm. 2020, 14, 302–310. [Google Scholar] [CrossRef]
- Ayoub, Z.; Mehta, A. Medicinal Plants as Potential Source of Antioxidant Agents: A Review. Asian J. Pharm. Clin. Res. 2018, 11, 50–56. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Potential Application of Essential Oils as Natural Antioxidants in Meat and Meat Products: A Review. Food Rev. Int. 2014, 30, 71–90. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Frassinetti, S.; Caltavuturo, L.; Cini, M.; Della Croce, C.M.; Maserti, B.E. Antibacterial and Antioxidant Activity of Essential Oils from Citrus spp. J. Essent. Oil Res. 2011, 23, 27–31. [Google Scholar] [CrossRef]
- Lin, X.; Cao, S.; Sun, J.; Lu, D.; Zhong, B.; Chun, J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021, 26, 3412. [Google Scholar] [CrossRef]
- Toscano-Garibay, J.D.; Arriaga-Alba, M.; Sánchez-Navarrete, J.; Mendoza-García, M.; Flores-Estrada, J.J.; Moreno-Eutimio, M.A.; Espinosa-Aguirre, J.J.; González-Ávila, M.; Ruiz-Pérez, N.J. Antimutagenic and Antioxidant Activity of the Essential Oils of Citrus sinensis and Citrus latifolia. Sci. Rep. 2017, 7, 11479. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, M.L.; Ionta, M.; Ferreira, G.Á.; Campidelli, M.L.L.; Nelson, D.L.; Ferreira, V.R.F.; Rezende, D.A.D.C.S.; Cardoso, M.D.G. Biological Activities of the Essential Oil from the Moro Orange Peel (Citrus sinensis (L.) Osbeck). Flavour Fragr. J 2020, 35, 294–301. [Google Scholar] [CrossRef]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant Activity of Limonene on Normal Murine Lymphocytes: Relation to H2O2 Modulation and Cell Proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 38–44. [Google Scholar] [CrossRef]
- Piccialli, I.; Tedeschi, V.; Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Secondo, A.; Pannaccione, A. The Antioxidant Activity of Limonene Counteracts Neurotoxicity Triggered byAβ1-42 Oligomers in Primary Cortical Neurons. Antioxidants 2021, 10, 937. [Google Scholar] [CrossRef]
- Omari, N.E.; Mrabti, H.N.; Benali, T.; Ullah, R.; Alotaibi, A.; Abdullah, A.D.I.; Goh, K.W.; Bouyahya, A. Expediting Multiple Biological Properties of Limonene and α-Pinene: Main Bioactive Compounds of Pistacia lentiscus L., Essential Oils. Front. Biosci. (Landmark Ed) 2023, 28, 229. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.B.; Mehta, A.A. In Vitro Evaluation of Antioxidant Activity of D-Limonene. Asian J. Pharm. Pharmacol. 2018, 4, 883–887. [Google Scholar] [CrossRef]
- Junior, M.R.M.; e Silva, T.A.R.; Franchi, G.C.; Nowill, A.; Pastore, G.M.; Hyslop, S. Antioxidant Potential of Aroma Compounds Obtained by Limonene Biotransformation of Orange Essential Oil. Food Chem. 2009, 116, 8–12. [Google Scholar] [CrossRef]
- Ramasamy, S.S.; Bhaskar, A. Evaluation of the Wound-Healing Potency of Citrus sinensis in Wistar Albino Rats. Der. Pharm. Lett. 2016, 8, 161–168. [Google Scholar]
- Gupta, D.N.; Rani, R.; Kokane, A.D.; Ghosh, D.K.; Tomar, S.; Sharma, A.K. Characterization of a Cytoplasmic 2-Cys Peroxiredoxin from Citrus sinensis and Its Potential Role in Protection from Oxidative Damage and Wound Healing. Int. J. Biol. Macromol. 2022, 209, 1088–1099. [Google Scholar] [CrossRef]
- Kulig, M.; Galanty, A.; Grabowska, K.; Podolak, I. Assessment of Safety and Health-Benefits of Citrus hystrix DC. Peel Essential Oil, with Regard to Its Bioactive Constituents in an in Vitro Model of Physiological and Pathological Skin Conditions. Biomed. Pharmacother. 2022, 151, 113151. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.N.; Wu, F.; Labuda, I.; Tchou-Wong, K.-M.; Burns, F.J. D-Limonene Prevents Ultraviolet Irradiation: Induced Cyclobutane Pyrimidine Dimers in Skh1 Mouse Skin. World 2014, 3, 64. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Jung, E.Y.; Noh, D.O.; Suh, H.J. Physiological Effects of Formulation Containing Tannase-Converted Green Tea Extract on Skin Care: Physical Stability, Collagenase, Elastase, and Tyrosinase Activities. Integr. Med. Res. 2014, 3, 25–33. [Google Scholar] [CrossRef] [PubMed]
- El Hachlafi, N.; Mrabti, H.N.; Al-Mijalli, S.H.; Jeddi, M.; Abdallah, E.M.; Benkhaira, N.; Hadni, H.; Assaggaf, H.; Qasem, A.; Goh, K.W.; et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023, 28, 5913. [Google Scholar] [CrossRef] [PubMed]
- Castro-Jácome, T.P.; Alcántara-Quintana, L.E.; Lugo-Cervantes, E.; Montalvo-González, E.; Ortiz-Basurto, R.I.; Tovar-Pérez, E.G. Anti-Elastase, Anti-Tyrosinase and Antioxidant Properties of a Peptide Fraction Obtained from Sorghum (Sorghum bicolor L. Moench) Grain. Int. Food Res. J. 2019, 26, 1813–1822. [Google Scholar]
- Horng, C.-T.; Wu, H.-C.; Chiang, N.-N.; Lee, C.-F.; Huang, Y.-S.; Wang, H.-Y.; Yang, J.-S.; Chen, F.-A. Inhibitory Effect of Burdock Leaves on Elastase and Tyrosinase Activity. Exp. Ther. Med. 2017, 14, 3247–3252. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Yim, E.-Y.; Song, G.; Lee, N.H.; Hyun, C.-G. Screening of Elastase and Tyrosinase Inhibitory Activity from Jeju Island Plants. Eurasian J. Biosci. 2010, 4, 41–53. [Google Scholar] [CrossRef]
- Kacem, R.; Meraihi, Z. Effects of Essential Oil Extracted from Nigella sativa (L.) Seeds and Its Main Components on Human Neutrophil Elastase Activity. Yakugaku Zasshi 2006, 126, 301–305. [Google Scholar] [CrossRef]
- Oulebsir, C.; Mefti-Korteby, H.; Djazouli, Z.-E.; Zebib, B.; Merah, O. Essential Oil of Citrus aurantium L. Leaves: Composition, Antioxidant Activity, Elastase and Collagenase Inhibition. Agronomy 2022, 12, 1466. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chandrashekar, K.S.; Pai, K.S.R.; Setty, M.M.; Devkar, R.A.; Reddy, N.D.; Shoja, M.H. Evaluation of Antioxidant and Anticancer Activity of Extract and Fractions of Nardostachys Jatamansi DC in Breast Carcinoma. BMC Complement. Altern. Med. 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Guevara, I.; Iwanejko, J.; Dembińska-Kieć, A.; Pankiewicz, J.; Wanat, A.; Anna, P.; Gołąbek, I.; Bartuś, S.; Malczewska-Malec, M.; Szczudlik, A. Determination of Nitrite/Nitrate in Human Biological Material by the Simple Griess Reaction. Clin. Chim. Acta 1998, 274, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Heendeniya, S.N.; Keerthirathna, L.R.; Manawadu, C.K.; Dissanayake, I.H.; Ali, R.; Mashhour, A.; Alzahrani, H.; Godakumbura, P.; Boudjelal, M.; Peiris, D.C. Therapeutic Efficacy of Nyctanthes Arbor-Tristis Flowers to Inhibit Proliferation of Acute and Chronic Primary Human Leukemia Cells, with Adipocyte Differentiation and in Silico Analysis of Interactions between Survivin Protein and Selected Secondary Metabolites. Biomolecules 2020, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- El Hachlafi, N.; Benkhaira, N.; Zouine, N.; Fadil, M.; Jeddi, M.; Jeddi, S.; Flouchi, R.; Ibnsouda K., S.; Fikri-Benbrahim, K. Exploration of novel antibacterial and anti-adhesive formulations from three chemically characterized essential oils: Optimization using experimental design methodology. Scientific African 2023, 22, e01927. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Al-Mijalli, S.H.; Mrabti, H.N.; Abdnim, R.; Abdallah, E.M.; Jeddi, M.; Bnouham, M.; Lee, L.-H.; Ardianto, C.; et al. Phytochemical Analysis and Evaluation of Antimicrobial, Antioxidant, and Antidiabetic Activities of Essential Oils from Moroccan Medicinal Plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed. Pharmacother. 2023, 164, 114937. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Hakkur, M.; El Hachlafi, N.; Charfi, S.; Balahbib, A.; Guaouguaou, F.-E.; Rebezov, M.; Maksimiuk, N.; Shariati, M.A.; et al. Sources, Health Benefits, and Biological Properties of Zeaxanthin. Trends Food Sci. Technol. 2021, 118, 519–538. [Google Scholar] [CrossRef]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N.; et al. Essential Oils of Mentha Viridis Rich Phenolic Compounds Show Important Antioxidant, Antidiabetic, Dermatoprotective, Antidermatophyte and Antibacterial Properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
N° | Compounds | Molecular Formula | RI | Area (%) |
---|---|---|---|---|
1 | α-pinene | C10H16 | 948 | 2.81 |
2 | Thujene | C10H16 | 897 | 10.52 |
3 | Myrcene | C10H16 | 958 | 5.54 |
4 | Carene | C10H16 | 948 | 0.26 |
5 | p-cymene | C10H16 | 987 | 1.00 |
6 | D-limonene | C10H16 | 1018 | 70.15 |
7 | Linalool | C10H18O | 1082 | 2.07 |
8 | γ-terpinene | C10H18O | 1140 | 3.35 |
9 | Citronellal | C10H18O | 1031 | 0.57 |
10 | Limonene oxide | C10H16O | 1031 | 1.0 |
11 | D-carvone | C10H14O | 1190 | 0.73 |
Total | 98% | |||
Monoterpene hydrocarbons | 92.63% | |||
Oxygenated monoterpenes | 4.37% | |||
Others | 1% |
Treatments | IC50 Value ± SD (µg/mL) | Selectivity Index * | |||||
---|---|---|---|---|---|---|---|
MCF-7 | HCT-15 | HepG2 | PBMC | MCF-7 | HCT-15 | HepG2 | |
CS-EO | 30.93 ± 1.49 | 64.11 ± 5.45 | 15.97 ± 1.20 | 546.40 ± 6.72 | 17.64 ± 0.05 | 8.51 ± 0.20 | 34.17 ± 0.21 |
D-limonene | 5.62 ± 0.75 | 7.32 ± 0.86 | 0.55 ± 0.01 | 21.35 ± 1.55 | 3.79 ± 0.19 | 2.92 ± 0.34 | 38.82 ± 0.10 |
Cisplatin | 3.63 ± 0.40 | 6.56 ± 0.13 | 4.23 ± 0.66 | 23.45 ± 2.13 | 6.46 ± 0.20 | 3.57 ± 0.29 | 5.53 ± 0.21 |
IC50 (µg/mL) | |||
---|---|---|---|
DPPH | FRAP | β-Carotene | |
CS-EO | 82.54 ± 2.11 a | 117.35 ± 3.67 c | 67.48 ± 2.05 a |
Limonene | 93.16 ± 1.56 b | 81.10 ± 2.21 b | 105.09 ± 1.26 c |
BHT | 77.06 ± 0.03 a | 61.13 ± 0.03 a | 75.24 ± 0.09 b |
Tyrosinase | Elastase | |
---|---|---|
IC50 (µg/mL) | ||
CS-EO | 65.72 ± 1.92 a | 102 ± 2.16 b |
Limonene | 86.07 ± 1.53 b | 78.34 ± 1.15 a |
Quercetin | 111.03 ± 0.1 c | 124.22 ± 0.07 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hachlafi, N.; Elbouzidi, A.; Batbat, A.; Taibi, M.; Jeddi, M.; Addi, M.; Naceiri Mrabti, H.; Fikri-Benbrahim, K. Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene. Pharmaceuticals 2024, 17, 1652. https://doi.org/10.3390/ph17121652
El Hachlafi N, Elbouzidi A, Batbat A, Taibi M, Jeddi M, Addi M, Naceiri Mrabti H, Fikri-Benbrahim K. Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene. Pharmaceuticals. 2024; 17(12):1652. https://doi.org/10.3390/ph17121652
Chicago/Turabian StyleEl Hachlafi, Naoufal, Amine Elbouzidi, Amine Batbat, Mohamed Taibi, Mohamed Jeddi, Mohamed Addi, Hanae Naceiri Mrabti, and Kawtar Fikri-Benbrahim. 2024. "Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene" Pharmaceuticals 17, no. 12: 1652. https://doi.org/10.3390/ph17121652
APA StyleEl Hachlafi, N., Elbouzidi, A., Batbat, A., Taibi, M., Jeddi, M., Addi, M., Naceiri Mrabti, H., & Fikri-Benbrahim, K. (2024). Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene. Pharmaceuticals, 17(12), 1652. https://doi.org/10.3390/ph17121652