Is Pollution the Primary Driver of Infectious Syndemics?
Abstract
:1. Introduction
2. Air Pollution and Health
3. Pathways: Air Pollution and Infectious Disease
The Mechanisms Linking Air Pollution and Infection Include the Following
4. Syndemics of Air Pollution
5. Limitations
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- McMichael, A.J. Environmental and social influences on emerging infectious diseases: Past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1049–1058. [Google Scholar] [CrossRef]
- Singer, M.; Rylko-Bauer, B. The Syndemics and Structural Violence of the COVID Pandemic: Anthropological Insights on a Crisis. Open Anthr. Res. 2021, 1, 7–32. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Celli, B.R.; Agustí, A.; Criner, G.J.; Dransfield, M.T.; Divo, M.; Krishnan, J.K.; Lahousse, L.; de Oca, M.M.; Salvi, S.S.; et al. COPD and multimorbidity: Recognising and addressing a syndemic occurrence. Lancet Respir. Med. 2023, 11, 1020–1034. [Google Scholar] [CrossRef]
- Giombi, F.; Pace, G.M.; Pirola, F.; Cerasuolo, M.; Ferreli, F.; Mercante, G.; Spriano, G.; Canonica, G.W.; Heffler, E.; Ferri, S.; et al. Airways Type-2 Related Disorders: Multiorgan, Systemic or Syndemic Disease? Int. J. Mol. Sci. 2024, 25, 730. [Google Scholar] [CrossRef] [PubMed]
- Kalofonos, I.; McCoy, M. Purity, Danger, and Patriotism: The Struggle for a Veteran Home during the COVID-19 Pandemic. Pathogens 2023, 12, 482. [Google Scholar] [CrossRef]
- Mendenhall, E.; Newfield, T.; Tsai, A.C. Syndemic theory, methods, and data. Soc. Sci. Med. 2022, 295, 114656. [Google Scholar] [CrossRef] [PubMed]
- Shrinivasan, R.; Rane, S.; Pai, M. India’s syndemic of tuberculosis and COVID-19. BMJ Glob. Health 2020, 5, e003979. [Google Scholar] [CrossRef]
- Singer, M.; Bulled, N.; Ostrach, B.; Ginzburg, S.L. Syndemics: A Cross-Disciplinary Approach to Complex Epidemic Events Like COVID-19. Annu. Rev. Anthr. 2021, 50, 41–58. [Google Scholar] [CrossRef]
- Takao, C.; Nayanar, G.; Toyofuku, A. COVID-19 ‘syndemic’. Br. Dent. J. 2021, 231, 426. [Google Scholar] [CrossRef]
- Cheong, J.-G.; Ravishankar, A.; Sharma, S.; Parkhurst, C.N.; Grassmann, S.A.; Wingert, C.K.; Laurent, P.; Ma, S.; Paddock, L.; Miranda, I.C.; et al. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 2023, 186, 3882–3902.e24. [Google Scholar] [CrossRef]
- Epstein, P.R.; Chivian, E.; Frith, K. Emerging diseases threaten conservation. Environ. Health Perspect. 2003, 111, A506–A507. [Google Scholar] [CrossRef]
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Butt, E.W.; Turnock, S.T.; Rigby, R.; Reddington, C.L.; Yoshioka, M.; Johnson, J.S.; A Regayre, L.; Pringle, K.J.; Mann, G.W.; Spracklen, D.V. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 2017, 12, 104017. [Google Scholar] [CrossRef]
- Montenegro, M. 2023 IQAir World Air Quality Report. 2024. Available online: https://www.iqair.com/us/newsroom/waqr-2023-pr (accessed on 2 March 2024).
- Clay, K.; Muller, N.Z.; Wang, X. Recent Increases in Air Pollution: Evidence and Implications for Mortality. Rev. Environ. Econ. Policy 2021, 15, 154–162. [Google Scholar] [CrossRef]
- Landrigan, P.; Fuller, R.; Acosta, N.; Adevi, O.; Arnold, R.; Basu, N.; Balde, A.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)32345-0/abstract (accessed on 2 March 2024). [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Nunez, Y.; Benavides, J.; Shearston, J.A.; Krieger, E.M.; Daouda, M.; Henneman, L.R.F.; McDuffie, E.E.; Goldsmith, J.; Casey, J.A.; Kioumourtzoglou, M.-A. An environmental justice analysis of air pollution emissions in the United States from 1970 to 2010. Nat. Commun. 2024, 15, 268. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, F.; Zhu, J.; Huang, K.; Dai, L.; Li, X.; Wang, Y.; Li, Q.; Lu, X.; Huang, J.; et al. Maternal Exposure to PM2.5 and the Risk of Congenital Heart Defects in 1.4 Million Births: A Nationwide Surveillance-Based Study. Circulation 2023, 147, 565–574. [Google Scholar] [CrossRef]
- Rentschler, J.; Leonova, N. Global air pollution exposure and poverty. Nat. Commun. 2023, 14, 4432. [Google Scholar] [CrossRef]
- Yu, W.; Ye, T.; Zhang, Y.; Xu, R.; Lei, Y.; Chen, Z.; Yang, Z.; Zhang, Y.; Song, J.; Yue, X.; et al. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: A machine learning modelling study. Lancet Planet. Health 2023, 7, e209–e218. [Google Scholar] [CrossRef]
- Bell, M.L.; Davis, D.L. Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ. Health Perspect. 2001, 109 (Suppl. S3), 389–394. [Google Scholar] [CrossRef]
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al. A chronology of global air quality. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190314. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, D. Exposure to outdoor air pollution and its human health outcomes: A scoping review. PLoS ONE 2019, 14, e0216550. [Google Scholar] [CrossRef]
- Greenstone, M.; Hasenkopf, C. Air Quality Life Index. 2023. Available online: https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Faqli.epic.uchicago.edu%2Fwp-content%2Fuploads%2F2023%2F08%2FAQLI_2023_Report-Global.pdf&data=05%7C02%7Cmerrill.singer%40uconn.edu%7Cd93658e8c5074efa64e108dc4129ac56%7C17f1a87e2a254eaab9df9d439034b080%7C0%7C0%7C638456894435704098%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=2B7HVUDaeYKt9kbR8cB5%2Blrzi3g%2BDLEDEevdP4%2BrPlo%3D&reserved=0 (accessed on 2 March 2024).
- Hegelund, E.R.; Mehta, A.J.; Andersen, Z.J.; Lim, Y.-H.; Loft, S.; Brunekreef, B.; Hoek, G.; de Hoogh, K.; Mortensen, L.H. Air pollution and human health: A phenome-wide association study. BMJ Open 2024, 14, e081351. [Google Scholar] [CrossRef]
- Vandini, S.; Corvaglia, L.; Alessandroni, R.; Aquilano, G.; Marsico, C.; Spinelli, M.; Lanari, M.; Faldella, G. Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital. J. Pediatr. 2013, 39, 1. [Google Scholar] [CrossRef]
- Woodby, B.; Arnold, M.M.; Valacchi, G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann. N. Y. Acad. Sci. 2021, 1486, 15–38. [Google Scholar] [CrossRef]
- Croft, D.P.; Zhang, W.; Lin, S.; Thurston, S.W.; Hopke, P.K.; Masiol, M.; Squizzato, S.; Van Wijngaarden, E.; Utell, M.J.; Rich, D.Q. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann. Am. Thorac. Soc. 2019, 16, 321–330. [Google Scholar] [CrossRef]
- Jang, T.-Y.; Ho, C.-C.; Wu, C.-D.; Dai, C.-Y.; Chen, P.-C. Air pollution impede ALT normalization in chronic hepatitis B patients treated with nucleotide/nucleoside analogues. Medicine 2023, 102, e34276. [Google Scholar] [CrossRef]
- Berman, J.D. Air Pollution and Health—New Advances for an Old Public Health Problem. JAMA Netw. Open 2024, 7, e2354551. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Nobile, F.; Marb, A.; Dubrow, R.; Stafoggia, M.; Breitner, S.; Kinney, P.L.; Chen, K. Short-Term Exposure to Fine Particulate Matter and Nitrogen Dioxide and Mortality in 4 Countries. JAMA Netw. Open 2024, 7, e2354607. [Google Scholar] [CrossRef]
- Ciencewicki, J.; Jaspers, I. Air Pollution and Respiratory Viral Infection. Inhal. Toxicol. 2007, 19, 1135–1146. [Google Scholar] [CrossRef]
- Domingo, J.L.; Rovira, J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 2020, 187, 109650. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Fann, N.L.; Nolte, C.G.; Sarofim, M.C.; Martinich, J.; Nassikas, N.J. Associations Between Simulated Future Changes in Climate, Air Quality, and Human Health. JAMA Netw. Open 2021, 4, e2032064. [Google Scholar] [CrossRef] [PubMed]
- Bulled, N.; Singer, M. Health and the Anthropocene: Mounting concern about tick-borne disease interactions. In A Companion to the Anthropology of Environmental Health; Singer, M., Ed.; Wiley-Blackwell: San Francisco, CA, USA, 2016. [Google Scholar]
- Pham-Huy, L.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Magun, B.E.; Wood, L.J. Lung inflammation caused by inhaled toxicants: A review. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1391–1401. [Google Scholar] [CrossRef]
- Tsai, D.-H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. 2019, 26, 19697–19704. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef]
- Lai, A.; Chang, M.L.; O’Donnell, R.P.; Zhou, C.; Sumner, J.A.; Hsiai, T.K. Association of COVID-19 transmission with high levels of ambient pollutants: Initiation and impact of the inflammatory response on cardiopulmonary disease. Sci. Total. Environ. 2021, 779, 146464. [Google Scholar] [CrossRef] [PubMed]
- Sameer, A.S.; Nissar, S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. BioMed Res. Int. 2021, 2021, 1157023. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001343. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.A.; Ronaldson, A.; Alonso, J.; Dregan, A.; Mudway, I.; Valderas, J.M.; Vineis, P.; Bakolis, I. The relationship between air pollution and multimorbidity: Can two birds be killed with the same stone? Eur. J. Epidemiol. 2023, 38, 349–353. [Google Scholar] [CrossRef] [PubMed]
- English, P.B.; Von Behren, J.; Balmes, J.R.; Boscardin, J.; Carpenter, C.; Goldberg, D.E.; Horiuchi, S.; Richardson, M.; Solomon, G.; Valle, J.; et al. Association between long-term exposure to particulate air pollution with SARS-CoV-2 infections and COVID-19 deaths in California, U.S.A. Environ. Adv. 2022, 9, 100270. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.; Pontalti, M.; Cattani, G.; Rossini, M.; Viapiana, O.; Orsolini, G.; Benini, C.; Bertoldo, E.; Fracassi, E.; Gatti, D.; et al. Association between long-term exposure to air pollution and immune-mediated diseases: A population-based cohort study. RMD Open 2022, 8, e002055. [Google Scholar] [CrossRef] [PubMed]
- Conway, R.; Grimshaw, A.; Konig, M.; Putman, M.; Duarte-García, A.; Tseng, L.; Cabrera, D.; Chock, Y.; Degirmenci, H.; Duff, E.; et al. SARS-CoV-2 infection and COVID-19 outcomes in rheumatic diseases: A systematic literature review and meta-analysis. Arthritis Rheumatol. 2022, 74, 766–775. [Google Scholar] [CrossRef]
- Nikiphorou, E.; Alpizar-Rodriguez, D.; Gastelum-Strozzi, A.; Buch, M.; Peláez-Ballestas, I. Syndemics & syndemogenesis in COVID-19 and rheumatic and musculoskeletal diseases: Old challenges, new era. Rheumatology 2021, 60, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Samet, J.M.; Bell, M.L. Association between Short-Term Exposure to Air Pollution and COVID-19 Mortality: A Population-Based Case-Crossover Study Using Individual-Level Mortality Registry Confirmed by Medical Examiners. Environ. Health Perspect. 2022, 130, 117006. [Google Scholar] [CrossRef]
- Li, Z.; Mao, X.; Liu, Q.; Song, H.; Ji, Y.; Xu, D.; Qiu, B.; Tian, D.; Wang, J. Long-term effect of exposure to ambient air pollution on the risk of active tuberculosis. Int. J. Infect. Dis. 2019, 87, 177–184. [Google Scholar] [CrossRef]
- You, S.; Tong, Y.W.; Neoh, K.G.; Dai, Y.; Wang, C.-H. On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Environ. Pollut. 2016, 218, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Yasri, S.; Wiwanitkit, V. Tuberculosis and novel Wuhan coronavirus infection: Pathological interrelationship. Indian J. Tuberc. 2020, 67, 264. [Google Scholar] [CrossRef] [PubMed]
- Toe, S.; Nagy, M.; Albar, Z.; Yu, J.; Sattar, A.; Nazzinda, R.; Musiime, V.; Etajak, S.; Walyawula, F.; McComsey, G.A.; et al. Ambient air pollution is associated with vascular disease in Ugandan HIV-positive adolescents. AIDS 2022, 36, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Lin, Y.C.; Sung, F.C.; Huang, S.L.; Ko, Y.C.; Lai, J.S.; Su, H.J.; Shaw, C.K.; Lin, R.S.; Dockery, D.W. Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in taiwan. Environ. Health Perspect. 1999, 107, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.; Poletti, G.; Kebadze, T.; Morris, J.; Woodcock, A.; Johnston, S.; Custovic, A. Study of modifiable risk factors for asthma exacerbations: Virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 2006, 61, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Wark, P.; Johnston, S.; Simpson, J.; Hensley, M.; Gibson, P. Chlamydia pneumoniae immunoglobulin A reactivation and airway inflammation in acute asthma. Eur. Respir. J. 2002, 20, 834–840. [Google Scholar] [CrossRef]
- Lu, H.; Lin, F.; Huang, Y.; Kao, Y.; Loh, E. Role of air pollutants in dengue fever incidence: Evidence from two southern cities in Taiwan. Pathog. Glob. Health 2023, 117, 596–604. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue and Severe Dengue. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 2 March 2024).
- Atkins, R.; Zimmet, P. Diabetic kidney disease: Act now or pay later. Saudi J. Kidney Dis. Transplant. 2010, 21, 217–221. [Google Scholar]
- Peleg, A.Y.; Weerarathna, T.; McCarthy, J.S.; Davis, T.M.E. Common infections in diabetes: Pathogenesis, management and relationship to glycaemic control. Diabetes/Metab. Res. Rev. 2007, 23, 3–13. [Google Scholar] [CrossRef]
- Barker, W.; Mullooly, J. Pneumonia and influenza deaths during epidemics: Implications for prevention. Arch. Intern. Med. 1982, 142, 85–89. [Google Scholar] [CrossRef]
- Fernandez-Real, J.; Lopez-Bermejo, A.; Vendrell, J.; Ferri, M.; Recasens, M.; Ricart, W. Burden of infection and insulin resistance in healthy middle-aged men. Diabetes Care 2006, 29, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Šestan, M.; Marinović, S.; Kavazović, I.; Cekinović, Đ.; Wueest, S.; Wensveen, T.T.; Brizić, I.; Jonjić, S.; Konrad, D.; Wensveen, F.M.; et al. Virus-Induced Interferon-γ Causes Insulin Resistance in Skeletal Muscle and Derails Glycemic Control in Obesity. Immunity 2018, 49, 164–177.e6. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.G.; Han, K.D.; Lee, K.H.; La, Y.; Kwon, D.E.; Han, S.H. Impact of Cytomegalovirus Disease on New-Onset Type 2 Diabetes Mellitus: Population-Based Matched Case-Control Cohort Study. Diabetes Metab. J. 2019, 43, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: A cohort study. Lancet Diabetes Endocrinol. 2022, 10, 311–321. [Google Scholar] [CrossRef]
- Rubino, F.; Amiel, S.; Zimmet, P.; Alberti, G.; Bornstein, S.; Eckel, R.; Mingrone, G.; Boehm, B.; Cooper, M.; Chai, Z.; et al. New-onset diabetes in Covid-19. N. Engl. J. Med. 2020, 383, 789–790. [Google Scholar] [CrossRef]
- Boddu, S.; Aurangabadkar, G.; Kuchay, M. New onset diabetes, type 1 diabetes and COVID-19. Diabetes Metab. Syndr. 2022, 14, 2211–2217. [Google Scholar] [CrossRef]
- Kim, S.H.; Arora, I.; Hsia, D.S.; Knowler, W.C.; LeBlanc, E.; Mylonakis, E.; Pratley, R.; Pittas, A.G. New-Onset Diabetes After COVID-19. J. Clin. Endocrinol. Metab. 2023, 108, e1164–e1174. [Google Scholar] [CrossRef] [PubMed]
- Ssentongo, P.; Zhang, Y.; Witmer, L.; Chinchilli, V.M.; Ba, D.M. Association of COVID-19 with diabetes: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 20191. [Google Scholar] [CrossRef]
- Wihandani, D.M.; Purwanta, M.L.A.; Mulyani, W.R.W.; Putra, I.W.A.S.; Supadmanaba, I.G.P. New-onset diabetes in COVID-19: The molecular pathogenesis. Biomed. Pharmacother. 2023, 13, 3–12. [Google Scholar] [CrossRef]
- Wrona, M.; Skrypnik, D. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection—Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 13280. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Moshammer, H.; Lauriola, P.; Portincasa, P. Environmental health, COVID-19, and the syndemic: Internal medicine facing the challenge. Intern. Emerg. Med. 2022, 17, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Albats, E.; Etzkowitz, H. Interdisciplinary organization as a basic academic unit? Ind. High. Educ. 2021, 35, 173–187. [Google Scholar] [CrossRef]
- Hameed, M.; Najafi, M.; Cheeti, S.; Sheokand, A.; Mago, A.; Desai, S. Factors influencing international collaboration on the prevention of COVID-19. Public Health 2022, 212, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singer, M. Is Pollution the Primary Driver of Infectious Syndemics? Pathogens 2024, 13, 370. https://doi.org/10.3390/pathogens13050370
Singer M. Is Pollution the Primary Driver of Infectious Syndemics? Pathogens. 2024; 13(5):370. https://doi.org/10.3390/pathogens13050370
Chicago/Turabian StyleSinger, Merrill. 2024. "Is Pollution the Primary Driver of Infectious Syndemics?" Pathogens 13, no. 5: 370. https://doi.org/10.3390/pathogens13050370
APA StyleSinger, M. (2024). Is Pollution the Primary Driver of Infectious Syndemics? Pathogens, 13(5), 370. https://doi.org/10.3390/pathogens13050370