Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study
<p>The XRD patterns of RC (<b>A</b>); RC, NaC, and OC (<b>B</b>); and OC, PS, and 3% PCN (<b>C</b>).</p> "> Figure 2
<p>TEM images of 3% PCN at two magnifications (<b>A</b>,<b>B</b>).</p> "> Figure 3
<p>FT-IR spectra of RC, NaC, OC, and CPC (<b>A</b>); FTIR of OC, PS, and 3% PCN (<b>B</b>); and FT-IR of MC, PS, W1 IBTMS, and Ce(NO<sub>3</sub>)<sub>3</sub> (<b>C</b>).</p> "> Figure 4
<p>SEM images showing the diameter of MCs (top photo) and EDX analysis of MCs (bottom photo).</p> "> Figure 4 Cont.
<p>SEM images showing the diameter of MCs (top photo) and EDX analysis of MCs (bottom photo).</p> "> Figure 5
<p>Load vs. depth curves for thin-film samples.</p> "> Figure 6
<p>The Nyquist plot of 3% PCN (<b>top photo</b>) and 3% PCN(MC) in 3.5% NaCl at different temperatures (<b>bottom photo</b>).</p> "> Figure 7
<p>Schematic diagram of the coated C-steel-equivalent circuit.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polystyrene/Organoclay Nanocomposites
2.3. Preparation of Microcapsules Loaded with Corrosion Inhibitors
2.4. Pretreatment of C-Steel Electrodes and Casting
2.5. Characterization Methods
2.5.1. X-Ray Diffraction (XRD) Analysis
2.5.2. Transmission Electron Microscopy (TEM)
2.5.3. Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis
2.5.4. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Analyses
2.5.5. Nanoindentation Tests
2.6. Electrochemical Methods
3. Results and Discussion
3.1. Characterization Techniques
3.1.1. X-Ray Diffraction (XRD)
3.1.2. Transmission Electron Microscopy (TEM)
3.1.3. Fourier-Transform Infrared Spectroscopy (FT-IR)
FT-IR Spectra of RC, NaC, OC, and CPC
FT-IR Spectra of OC, PS, and 3% PCN
FT-IR of IBTMS, Ce(NO3)3, W1, and MC
3.1.4. Scanning Electron Microscopy (SEM)
3.1.5. Nanoindentation
3.2. Electrochemical Methods
3.2.1. Electrochemical Impedance Spectroscopy (EIS) as a Function of Temperature
3.2.2. Electrochemical Frequency Modulation (EFM) as a Function of Temperature
3.2.3. Evaluation of Self-Healing Properties
4. Conclusions
- We prepared a polymer clay nanocomposite coating using modified Khulays clay. The modification process of our coating was followed by many characterization processes like FT-IR, XRD, TEM, SEM-EDX, and the nanoindentation technique. In addition, we applied several electrochemical techniques. Polystyrene microcapsules loaded with corrosion inhibitors were successively prepared by double emulsion solvent evaporation methods. To prepare smart coatings, we prepared 3% PCN coatings then doped them with corrosion inhibitors cerium and silane to increase the coating efficiency.
- The protective coating efficiency was evaluated under temperature effect using several electrochemical techniques such as EIS, EFM, and LPR in 3.5% NaCl solutions. The results show that 3% PCN impregnated with MCs showed enhanced protection efficiency reaching over 99% compared to the non-impregnated 3% PCN coating formulation.
- The self-healing performance of PCN(MC) coatings was supported by related experiments, such as scratch test and temperature effect. The self-healing mechanism related to the diffusion mechanism of the inhibitors released from the microcapsules consists of two processes. The first one is the silanol functionality, which relies on its coupling agent property and the formation of a non-soluble adsorbed film on the surface of the C-steel electrode. The second one is the reduction in cerium. The results of our coating system are unique and provide promising applications.
- The prepared smart coatings showed superior corrosion protection as shown by the electrochemical measurements that could provide great potential for many applications in the coating of steel and carbon steel in the oil industry.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, E.; Jacobson, G.; Koch, G.; Varney, J.; Thopson, N.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE Int. 2016, A-19. [Google Scholar]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control an Introduction to Corrosion Science and Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Vasudeo Rane, A.; Kanny, K.; Abitha, V.K.; Patil, S.S.; Thomas, S. Clay-Polymer Composites: Design of Clay Polymer Nanocomposite by Mixing. In Clay-Polymer Nanocomposites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 113–144. [Google Scholar] [CrossRef]
- Sinha Ray, S. An Overview of Pure and Organically Modified Clays. In An Overview of Pure and Organically Modified Clays; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–24. [Google Scholar] [CrossRef]
- Paul, P.K.; Hussain, S.A.; Bhattacharjee, D.; Pal, M. Preparation of Polystyrene-Clay Nanocomposite by Solution Intercalation Technique. Bull. Mater. Sci. 2013, 36, 361–366. [Google Scholar] [CrossRef]
- Pugazhenthi, G.; Suresh, K.; Vinoth Kumar, R.; Kumar, M.; Rajkumar Surin, R. A Simple Sonication Assisted Solvent Blending Route for Fabrication of Exfoliated Polystyrene (PS)/Clay Nanocomposites: Role of Various Clay Modifiers. Mater. Today Proc. 2018, 5, 13191–13210. [Google Scholar] [CrossRef]
- Cole, I.S. Smart Coatings for Corrosion Protection: An Overview. In Handbook of Smart Coatings for Materials Protection; Elsevier: Amsterdam, The Netherlands, 2014; pp. 29–55. [Google Scholar] [CrossRef]
- Scharf, S.; Noeske, M.; Cavalcanti, W.L.; Schiffels, P. Multi-Functional, Self-Healing Coatings for Corrosion Protection: Materials, Design and Processing. In Handbook of Smart Coatings for Materials Protection; Woodhead Publishing: Sawston, UK, 2014; pp. 75–104. [Google Scholar] [CrossRef]
- Hoseinzadeh, A.R.; Javadpour, S. Formulation of a Smart Nanocomposite Coating with PH-Responsive Loaded Halloysite and Investigation of Its Anticorrosion Behaviour. Bull. Mater. Sci. 2020, 43, 230. [Google Scholar] [CrossRef]
- Matsuda, T.; Jadhav, N.; Kashi, K.B.; Jensen, M.; Suryawanshi, A.; Gelling, V.J. Self-Healing Ability and Particle Size Effect of Encapsulated Cerium Nitrate into PH Sensitive Microcapsules. Prog. Org. Coat. 2016, 90, 425–430. [Google Scholar] [CrossRef]
- Koh, E.; Park, S. Self-Anticorrosion Performance Efficiency Of Renewable Dimer-Acid-Based Polyol Microcapsules Containing Corrosion Inhibitors With Two Triazole Groups. Prog. Org. Coat. 2017, 109, 61–69. [Google Scholar] [CrossRef]
- Al Juhaiman, L.A.; Al-Enezi, D.A.; Mekhamer, W.K. Preparation And Characterization Of Polystyrene/Organoclay Nanocomposites From Raw Clay. Dig. J. Nanomater. Biostruct. 2016, 11, 105–114. [Google Scholar]
- Al Juhaiman, L.A.; Al-Enezi, D.A.; Mekhamer, W.K. Polystyrene/Organoclay Nanocomposites As Anticorrosive Coatings Of C-Steel. Int. J. Electrochem. Sci. 2016, 11, 5618–5630. [Google Scholar] [CrossRef]
- Ben-Yahia, A.; El Kazzouli, S.; El Mokhtar, E.; Bousmina, M.M. Synthesis And Characterization Of New Organophilic Clay. Preparation of Polystyrene/Clay Nanocomposite. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 193–202. [Google Scholar]
- Cotting, F.; Aoki, I.V. Smart Protection Provided By Epoxy Clear Coating Doped With Polystyrene Microcapsules Containing Silanol And Ce (III) Ions As Corrosion Inhibitors. Surf. Coat. Technol. 2016, 303 Pt B, 310–318. [Google Scholar] [CrossRef]
- Makhlouf, A.S.H. Techniques For Synthesizing And Applying Smart Coatings For Material Protection. In Handbook of Smart Coatings for Materials Protection; Woodhead Publishing: Sawston, UK, 2014; pp. 56–74. [Google Scholar] [CrossRef]
- Yeh, J.M.; Liou, S.J.; Lin, C.G.; Chang, Y.P.; Yu, Y.H.; Cheng, C.F. Effective Enhancement Of Anticorrosive Properties Of Polystyrene By Polystyrene-Clay Nanocomposite Materials. J. Appl. Polym. Sci. 2004, 92, 1970–1976. [Google Scholar] [CrossRef]
- Fu, X.; Qutubuddin, S. Synthesis Of Polystyrene-Clay Nanocomposites. Mater. Lett. 2000, 42, 12–15. [Google Scholar] [CrossRef]
- Krimm, S.; Liang, C.Y.; Sutherland, G.B.B.M. Infrared Spectra Of High Polymers. II. Polyethylene. J. Chem. Phys. 1956, 25, 549–562. [Google Scholar] [CrossRef]
- Ahmed, G.S.; Gilberts, M.; Mainprize, S.; Rogerson, M. FT-IR Analysis of Silane Grafted High Density Polyethylene. Plast. Rubber Compos. 2009, 38, 13–20. [Google Scholar] [CrossRef]
- Zarinkamar, M.; Farahmandjou, M.; Firoozabadi, T.P. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. J. Nanostruct. 2016, 6, 116–120. [Google Scholar] [CrossRef]
- Sakhare, M.A.; Bharate, Y.N.; Survase, S.A.; Chavan, O.S. Synthesis, Characterisation And Antibacterial Evolutions Of Lanthanide Complexes With Mixed Ligands. Int. J. Adv. Innov. Res. 2019, 6, 207–211. [Google Scholar]
- Liu, J.H.; Zhang, Y.H.; Wang, L.Y.; Wei, Z.F. Drawing Out The Structural Information Of The First Layer of Hydrated Ions: ATR-FTIR Spectroscopic Studies On Aqueous NH4NO3, NaNO3, and Mg(NO3)2 Solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Samad, U.A.; Anis, A.; Sherif, E.S.M.; Abdo, H.S.; Al-Zahrani, S.M. The Effect of Zirconia Nanoparticles on Thermal, Mechanical, and Corrosion Behavior of Nanocomposite Epoxy Coatings on Steel Substrates. Materials 2023, 16, 4813. [Google Scholar] [CrossRef]
- Mei, B.A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.S.; Pilon, L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Kardar, P.; Arabi, A.M.; Amini, R.; Pasbakhsh, P. The Active Corrosion Performance Of Silane Coating Treated By Praseodymium Encapsulated With Halloysite Nanotubes. Prog. Org. Coat. 2020, 138, 105404. [Google Scholar] [CrossRef]
- Danaee, I.; Darmiani, E.; Rashed, G.R.; Zaarei, D. Self-Healing And Anticorrosive Properties Of Ce(III)/Ce(IV) In Nanoclay–Epoxy Coatings. Iran. Polym. J. 2014, 23, 891–898. [Google Scholar] [CrossRef]
- Ubaid, F.; Radwan, A.B.; Naeem, N.; Shakoor, R.A.; Ahmad, Z.; Montemor, M.F.; Kahraman, R.; Abdullah, A.M.; Soliman, A. Multifunctional Self-Healing Polymeric Nanocomposite Coatings For Corrosion Inhibition Of Steel. Surf. Coat. Technol. 2019, 372, 121–133. [Google Scholar] [CrossRef]
- Allen, K.W. Silane Coupling Agents, Second Edition. Int. J. Adhes. Adhes. 1992, 12, 57. [Google Scholar] [CrossRef]
- Nenashev, R.N.; Kotova, N.M.; Vishnevskii, A.S.; Vorotilov, K.A. Effect Of Methyltrimethoxysilane Hydrolysis And Condensation Conditions On The Properties Of Thin Polymethylsilsesquioxane Films. Inorg. Mater. 2016, 52, 625–629. [Google Scholar] [CrossRef]
- Liu, C.; Jin, Z.; Zhao, H.; Wang, L. Triple-Action Smart Nanocontainers Enhanced Protective Coatings With Superior Active And Passive Properties. Prog. Org. Coat. 2020, 148, 105887. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Ma, L.; Wang, J.; Zhang, D.; Li, X. Saline-Responsive Triple-Action Self-Healing Coating For Intelligent Corrosion Control. Mater. Des. 2022, 214, 110381. [Google Scholar] [CrossRef]
- Arenas, M.A.; Conde, A.; De Damborenea, J.J. Cerium: A Suitable Green Corrosion Inhibitor For Tinplate. Corros. Sci. 2002, 44, 511–520. [Google Scholar] [CrossRef]
- Hassannejad, H.; Moghaddasi, M.; Saebnoori, E.; Baboukani, A.R. Microstructure, Deposition Mechanism And Corrosion Behavior Of Nanostructured Cerium Oxide Conversion Coating Modified With Chitosan On AA2024 Aluminum Alloy. J. Alloys Compd. 2017, 725, 968–975. [Google Scholar] [CrossRef]
Sample Code | Hardness (MPa) | Reduced Modulus (MPa) |
---|---|---|
PS | 24.19 | 143.47 |
1% PCN | 5.77 | 85.07 |
3% PCN | 6.68 | 29.35 |
Sample | T (°C) | RCor (Ω·cm2) | RPO (Ω·cm2) | CCor (F·cm−2) | Cc (F·cm−2) | %PE |
---|---|---|---|---|---|---|
PS | 20 | 2.38 × 105 | 1.03 × 105 | 1.07 × 10−5 | 1.88 × 10−10 | - |
25 | 5.55 × 104 | 1.37 × 105 | 1.45 × 107 | 1.85 × 10−10 | - | |
30 | 3.09 × 104 | 3.09 × 104 | 7.46 × 102 | 1.20 × 10−5 | - | |
35 | 2.64 × 104 | 4.95 × 102 | 4.04 × 10−5 | 6.66 × 10−7 | - | |
3% PCN | 20 | 9.01 × 105 | 1.41 × 105 | 3.42 × 10−6 | 1.64 × 10−10 | 79.91 |
25 | 2.18 × 105 | 6.51 × 104 | 6.31 × 10−6 | 1.76 × 10−10 | 74.50 | |
30 | 1.21 × 105 | 4.52 × 104 | 1.86 × 10−5 | 2.24 × 10−10 | 74.46 | |
35 | 6.98 × 104 | 4.00 × 104 | 1.66 × 10−5 | 2.31 × 10−10 | 62.17 | |
3% PCN(MC) | 20 | 6.09 × 107 | 4.92 × 105 | 2.79 × 10−6 | 2.29 × 10−10 | 99.70 |
25 | 3.21 × 106 | 2.84 × 105 | 1.11 × 10−5 | 2.44 × 10−10 | 98.27 | |
30 | 7.68 × 105 | 1.87 × 105 | 5.98 × 10−6 | 2.89 × 10−10 | 95.98 | |
35 | 1.27 × 105 | 1.05 × 105 | 2.77 × 10−5 | 3.06 × 10−10 | 79.21 |
Sample | T (°C) | Icorr (µA/cm2) | Corrosion Rate (mpy) | %PE |
---|---|---|---|---|
PS | 20 | 2.79 × 10−2 | 2.69 × 10−3 | - |
25 | 3.24 × 10−1 | 3.11 × 10−2 | - | |
30 | 1.28 | 1.23 × 10−1 | - | |
35 | 1.44 | 1.38 × 10−1 | - | |
3% PCN | 20 | 7.20 × 10−3 | 6.93 × 10−4 | 85.21 |
25 | 1.75 × 10−2 | 1.68 × 10−3 | 94.50 | |
30 | 1.39 × 10−1 | 1.34 × 10−2 | 89.14 | |
35 | 1.52 × 10−1 | 1.47 × 10−2 | 89.44 | |
3% PCN(MC) | 20 | 3.49 × 10−3 | 3.36 × 10−4 | 92.83 |
25 | 7.38 × 10−3 | 7.10 × 10−4 | 97.70 | |
30 | 2.33 × 10−2 | 2.24 × 10−3 | 98.18 | |
35 | 5.54 × 10−2 | 5.33 × 10−3 | 96.15 |
Sample | Time (Hrs.) | RCor (Ω·cm2) | RPO (Ω·cm2) | CCor (F·cm−2) | CC (F·cm−2) | %PE |
---|---|---|---|---|---|---|
3% PCN | 2 | 3.85 × 106 | 2.38 × 106 | 8.81 × 10−8 | 1.97 × 10−10 | - |
4 | 1.04 × 106 | 5.53 × 105 | 1.34 × 10−6 | 1.90 × 10−10 | - | |
6 | 1.50 × 106 | 4.83 × 103 | 3.90 × 10−6 | 1.88 × 10−10 | - | |
24 | 3.66 × 107 | 1.32 × 105 | 2.31 × 10−6 | 1.95 × 10−10 | - | |
3% PCN(MC) | 2 | 6.08 × 106 | 1.11 × 106 | 1.99 × 10−7 | 1.80 × 10−10 | 36.67 |
4 | 1.63 × 106 | 6.45 × 105 | 3.65 × 10−7 | 1.94 × 10−10 | 36.19 | |
6 | 1.97 × 106 | 4.44 × 105 | 4.90 × 10−7 | 1.94 × 10−10 | 23.85 | |
24 | 7.22 × 109 | 6.02 × 106 | 1.49 × 10−7 | 1.77 × 10−10 | 99.02 |
Sample | Time (Hrs.) | RCor (Ω·cm2) | RPO (Ω·cm2) | CCor (F·cm−2) | CC (F·cm−2) | %PE |
---|---|---|---|---|---|---|
3% PCN mechanical defect | 2 | 1.59 × 103 | 1.02 × 102 | 3.41 × 10−4 | 5.36 × 10−4 | - |
4 | 5.19 × 102 | 23.83 | 8.80 × 10−4 | 6.81 × 10−4 | - | |
6 | 3.87 × 102 | 19.46 | 1.02 × 10−3 | 8.73 × 10−4 | - | |
24 | 7.32 × 103 | 17.61 | 9.10 × 10−4 | 5.96 × 10−4 | - | |
30 | 6.39 × 105 | 10.48 | 1.44 × 10−3 | 4.92 × 10−4 | - | |
3% PCN(MC) mechanical defect | 2 | 2.94 × 103 | 208.4 | 1.27 × 10−4 | 8.60 × 10−5 | 45.80 |
4 | 1.57 × 103 | 89.89 | 2.82 × 10−4 | 2.02 × 10−4 | 66.87 | |
6 | 1.36 × 103 | 60.1 | 3.48 × 10−4 | 6.52 × 10−4 | 71.57 | |
24 | 2.75 × 106 | 14.28 | 2.63 × 10−3 | 2.17 × 10−3 | 99.73 | |
30 | 1.60 × 108 | 13.76 | 2.62 × 10−3 | 2.42 × 10−3 | 99.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Juhaiman, L.A.; Al Jufareen, M.A.; Al-Zahrani, S.M.; Abdus Samad, U.; Al-Garni, T.S. Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study. Polymers 2024, 16, 3196. https://doi.org/10.3390/polym16223196
Al Juhaiman LA, Al Jufareen MA, Al-Zahrani SM, Abdus Samad U, Al-Garni TS. Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study. Polymers. 2024; 16(22):3196. https://doi.org/10.3390/polym16223196
Chicago/Turabian StyleAl Juhaiman, Layla A., Mona A. Al Jufareen, Saeed M. Al-Zahrani, Ubair Abdus Samad, and Tahani S. Al-Garni. 2024. "Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study" Polymers 16, no. 22: 3196. https://doi.org/10.3390/polym16223196
APA StyleAl Juhaiman, L. A., Al Jufareen, M. A., Al-Zahrani, S. M., Abdus Samad, U., & Al-Garni, T. S. (2024). Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study. Polymers, 16(22), 3196. https://doi.org/10.3390/polym16223196