How to Sterilize Polylactic Acid Based Medical Devices?
<p>PLA DSC thermogram before and after the hygienization process and the five sterilization processes. (PLAC) control, (PLAH) hygienized, (PLASEtO) sterilized with ethylene oxide, (PLASH2O2) sterilized with hydrogen peroxide plasma, (PLASSS) sterilized with saturated steam, (PLASEB) sterilized with electron bean radiation, (PLASGR) sterilized with gamma radiation. Reprinted from M. Savaris, V. dos Santos, R.N. Brandalise, <span class="html-italic">Mater. Sci. Eng. C</span> 2016, 69, 661–667 [<a href="#B26-polymers-13-02115" class="html-bibr">26</a>]. Copyright 2019, with permission from Elsevier.</p> "> Figure 2
<p>Morphology of aligned PLA fibres: (<b>a</b>) non-sterilized, (<b>b</b>) sterilized by ethylene oxide, (<b>c</b>) sterilized by UV radiation, (<b>d</b>) sterilized by gamma-rays radiation. Reprinted with permission from T.A.M. Valente, D.M. Silva, P.S. Gomes et al., <span class="html-italic">ACS Appl. Mater. Interfaces</span> 2016, 8, 3241–3249 [<a href="#B35-polymers-13-02115" class="html-bibr">35</a>]. Copyright 2016 American Chemical Society.</p> "> Figure 3
<p>SEM images of cross sections of not treated (<b>A</b>) and CO<sub>2</sub> treated (<b>B</b>) PLLA scaffolds (40 MPa, 20 h and 40 <b>°</b>C). Reprinted from S. Lanzalaco, S. Campora, V. Brucato, et al., <span class="html-italic">J. Supercrit. Fluids</span> 2016, 111, 83–90 [<a href="#B54-polymers-13-02115" class="html-bibr">54</a>]. Copyright 2016, with permission from Elsevier.</p> ">
Abstract
:1. Background
2. Heat-Based Sterilization Methods
3. Chemical and Plasma-Based Sterilization Methods
3.1. Ethylene Oxide
3.2. Hydrogen Peroxide Gas Plasma (HPGP)
4. Irradiation-Based Sterilization Methods
4.1. Gamma Radiation
4.2. Electron Beam Radiation
4.3. Ultraviolet Radiation
5. New Approaches and Alternatives
5.1. Supercritical CO2 Sterilization Method
5.2. 3D Printing. A Self-Sterilization Method
6. Current Status and Future Perspectives
Material | Sterilization Method | Characterization Method | Changes after Sterilization | References | |
---|---|---|---|---|---|
Physicochemical Evaluation | Biological Evaluation | ||||
PLA | Steam heat | Molecular weight Mechanical properties | - | Yes | [22] |
Lactide copolymers | Dry heat | Molecular weight/Mechanical properties/DSC | - | Yes | [21] |
PLLA | EtO Gamma radiation | Molecular weight (GPC)/Mechanical tests/FTIR/DSC/Degradation studies | - | No Yes | [33] |
Microspheres of PLA and PLGA | scCO2 | Degradation analysis/DSC/FTIR | Microbiological | No | [53] |
Poly (96 L/4D-lactide) | Steam heat EtO Gamma irradiation | Mass loss/Molecular weight/DSC/Degradation studies | Cytotoxicity | Yes Yes Yes | [23] |
Spin-cast films Me.PEG-PLA copolymer | UV radiation | Protein adsorption (XPS)/Surface topography (AFM)/Molecular weight (GPC)/Composition (H-NMR)/Water soluble fraction (GPC) | Cell adhesion | No (in 2 h) Yes (after 5 to 24 h) | [51] |
PLLA pellets | EtO | Mechanical properties/Molecular weight/DSC/GPC/XRD/Raman | - | Yes (slight changes) | [34] |
PLA orthopaedic implant | HPGP (Sterrad) EtO | Molecular weight (GPC)/DSC/Mechanical properties/WAXD/Contact angle/ATR-FTIR/H2O2 residuals | - | Yes Yes | [36] |
Fluconazole- PLA or PLLA implantable delivery rods | Gamma radiation | Loading efficiency/PLC/XRD/GPC | In vivo release assays | Yes | [44] |
Hydroxyapatite/PLLA composite biomaterial | Gamma radiation | SEM/GPC/TGA/Mechanical properties | - | Yes (acceptable) | [10] |
PLA films | UV radiation | Molecular weight (GPC)/Contact angle | - | Yes | [52] |
PLA ultrasound contrast agents | O2 Plasma | Acoustic properties/Surface morphology/Zeta potential | - | Yes | [41] |
Poly-L-lactide electrospun scaffold | Absolute ethanol Dry oven Steam heat UV radiation HPGP | SEM/ATR-FTIR/DSC | Microbiological sterility assay | Yes (UV and HPGP the most efficient) | [28] |
PLA based ultrathin fibers for osteoconductive bone scaffolds | Gamma radiation | SEM/ATR-FTIR/DSC/TGA | Cell viability Cell anchorage | No | [45] |
3D scaffolds and 2D film with a graft copolymer of PLA for tissue engineering | Gamma radiation | - | Cytotoxicity | Yes | [42] |
PLA and PLGA guided tissue regeneration | Gamma radiation EtO (only PLAG) | FTIR/DSC/TGA/SEM | Microbiological | Yes | [46] |
PLA (70:30) coated with plasma polymerized Allylamine fibre meshes | Gamma radiation | XPS | Cell morphology In vivo studies | No and changes in cell spreading | [47] |
PLLA porous scaffolds | scCO2 | DSC/SEM/Crystallinity | Microbiological Biocompatibility | No | [54] |
Electrospun PLA fiber alignment for biomedical applications | EtO UV irradiation Gamma irradiation | FTIR/DSC/Contact angle/SEM/Fibre alignment quantification (FFT) | Cell adhesion Cell proliferation | Yes No No | [35] |
PLA films | Saturated steam Ethylene oxide HPGP E-beam radiation Gamma radiation | ATR-FTIR/DSC/Contact angle/Crystallinity/Colorimetry | - | Yes (not recommended) The rest of techniques do not produce significant changes | [26] |
PLA | Low temperature plasma | - | Mortality of several microorganisms | - | [40] |
PLA films | EtO | TGA/DSC/FTIR | Citotoxicity (MTT) in vivo Histology | No | [37] |
PLA flat sheets (for single-use, disposable medical devices) | Saturated steam EtO E-beam HPGP | Molecular weight (GPC)/WAXD/DSC/FTIR/Mechanical properties | - | EtO and saturated steam are discarded. Recommends the use of e-beam and HPGP | [27] |
PLA thin films for corneal implants | Steam sterilization | SEM/Contact angle/ Surface topography | In vivo assays (implants in corneal rabbits) | Yes | [25] |
PLA thin films | Steam sterilization | SEM/Surface topography/Contact angle/FTIR | Yes | [24] | |
Commercial PLA | E-beam | Molecular weight/Yellow index/WAXD/DSC/Mechanical properties | - | Yes (at higher doses) | [48] |
PLA films | E-beam Gamma radiation | Color analysis/surface tension/FTIR/DSC/Mechanical properties/Molecular weight/Permeability | - | Yes | [50] |
3D Printing Materials | Sterilization Method | Characterization Method | Effects of Sterilization | References | |
---|---|---|---|---|---|
Physicochemical Evaluation | Biological Evaluation | ||||
PLA for biomodels | Autoclave | Changes in area, volume and deformity by scanning | Sterility tests | Following their printing protocols and autoclave at 134 °C the pieces, it is safe and does not significantly alter the morphology of biomodels | [31] |
HTPLA custom cutting guides (CCG) for pediatric orthopaedic surgery | Autoclave | Design geometry (visual inspection) Mechanical properties | - | A HTPLA-printed CCG was produced and sterilized aggressively, maintaining its mechanical properties and design geometry | [32] |
PLA pieces | Autoclave | Mechanical resistance (breaking load/deformation/permeability) | Sterility tests | Autoclave sterilization of PLA-printed pieces is safe for the patient and mechanically strong for the surgeon | [30] |
PLA cylinders for bone model | EtO Gas Plasma Steam heat (autoclave) | Visual deformation | Bacterial growth of contaminated cylinders | Steam heat deformed completely the pieces. Gas Plasma does not eliminate all microorganisms Recommends the EtO in hospitals | [15] |
PLA Genioplasty Guide | HPGP (Sterrad®) | Volumetric deformation | - | Acceptable for surgical use (<1 mm) | [39] |
PLA bone model | Autoclave | Size analysis | - | Acceptable for surgical use (<1 mm) | [29] |
PLA scaffolds | Gamma radiation | - | Cytotoxicity Live/Dead assay | Biocompatible scaffolds, with bone cell colonization | [43] |
PLA for laboratory equipment | 3D printing extrusion | - | Cell culture Microbiological tests | The extrusion process sterilizes the piece, with possible applications in experiments with bacteria and cells | [55] |
PLA (1% gentamicin) for biomedical applications | H2O2 vapour | Mechanical properties Physical changes (dimension, mass, colour) | - | Changes in colour, mass and mechanical properties, which may not be significant depending on the application | [11] |
PLA surgical retractors | 2.4% glutaraldehyde solution 3D printing extrusion | Strength test | Polymerase chain reaction (PCR) to test bacterial load | Material extruded in a clean environment produces a ready-to-use sterile instrument. Residuals of bacterial nucleic acids were found after sterilization by glutaraldehyde, but it is attributed to the high sensitivity of the test (residuals belonging to dead bacteria) Strong enough for the demands of the operating room. | [38] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lerouge, S. Introduction to sterilization: Definitions and challenges. In Sterilisation of Biomaterials and Medical Devices; Lerouge, S., Simmons, A., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 1–19. [Google Scholar]
- Crow, S. Sterilization processes. Meeting the demands of today´s health care technology. Nurs. Clin. N. Am. 1993, 28, 687–695. [Google Scholar]
- Qiu, Q.Q.; Sun, W.Q.; Connor, J. Sterilization of Biomaterials of Synthetic and Biological Origin; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tipnis, N.P.; Burgess, D.J. Sterilization of implantable polymer-based medical devices: A review. Int. J. Pharm. 2018, 544, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Soares, G.C.; Learmonth, D.A.; Vallejo, M.C.; Davila, S.P.; González, P.; Sousa, R.A.; Oliveira, A.L. Supercritical CO2 technology: The next standard sterilization technique? Mater. Sci. Eng. C 2019, 99, 520–540. [Google Scholar] [CrossRef]
- Ribeiro, N.; Soares, G.C.; Santos-Rosales, V.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C.A.; Oliveira, A. A new era for sterilization based on supercritical CO2 technology. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 399–428. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Yun, Y.; Park, K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 2016, 107, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Ronholm, J.; Tian, Y.; Sethi, B.; Cao, X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Lasprilla, A.J.; Martinez, G.A.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Suljovrujić, E.; Ignjatović, N.; Uskoković, D.; Mitrić, M.; Mitrović, M.; Tomić, S. Radiation-induced degradation of hydroxyapatite/poly L-lactide composite biomaterial. Radiat. Phys. Chem. 2007, 76, 722–728. [Google Scholar] [CrossRef]
- Sosnowski, E.-P.; Morrison, J. Sterilization of medical 3D printed plastics: Is H2O2 vapour suitable? Can. Med. Biol. Eng. Soc. 2017, 40. [Google Scholar]
- Gregor, A.; Filová, E.; Novák, M.; Kronek, J.; Chlup, H.; Buzgo, M.; Blahnová, V.; Lukášová, V.; Bartoš, M.; Nečas, A.; et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng. 2017, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lambert, B.J.; Mendelson, T.A.; Craven, M.D. Radiation and Ethylene Oxide Terminal Sterilization Experiences with Drug Eluting Stent Products. AAPS PharmSciTech 2011, 12, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Aguado-Maestro, I.; de Frutos-Serna, M.; González-Nava, A.; Santos, A.B.M.; García-Alonso, M. Are the common sterilization methods completely effective for our in-house 3D printed biomodels and surgical guides? Injury 2020, 52, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, T.; Planell, J.; Navarro, M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013, 9, 5521–5530. [Google Scholar] [CrossRef] [PubMed]
- Rendeki, S.; Nagy, B.; Bene, M.; Pentek, A.; Toth, L.; Szanto, Z.; Told, R.; Maroti, P. An Overview on Personal Protective Equipment (PPE) Fabricated with Additive Manufacturing Technologies in the Era of COVID-19 Pandemic. Polymers 2020, 12, 2703. [Google Scholar] [CrossRef] [PubMed]
- Chepelev, L.L.; Rybicki, J. Sterlization of 3D Printed Parts Used as Medical Devices in the Covid Pandemic. In 3D Printing in Medicine and Its Role in the COVID-19 Pandemic; Rybicki, F.J., Ed.; Springer: Cham, Switzerland, 2021; pp. 107–115. [Google Scholar]
- Rediguieri, C.F.; Sassonia, R.C.; Dua, K.; Kikuchi, I.S.; Pinto, T.D.J.A. Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur. Polym. J. 2016, 82, 181–195. [Google Scholar] [CrossRef]
- Gogolewski, S.; Mainil-Varlet, P. The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides: I. Poly(l-lactide). Biomaterials 1996, 17, 523–528. [Google Scholar] [CrossRef]
- Rozema, F.R.; Bos, R.R.M.; Boering, G.; Van Asten, J.A.A.M.; Nijenhuis, A.J.; Pennings, A.J. The effects of different steam-sterilization programs on material properties of poly(L-lactide). J. Appl. Biomater. 1991, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Cordewener, F.W.; Van Geffen, M.F.; Joziasse, C.A.; Schmitz, J.P.; Bos, R.R.; Rozema, F.R.; Pennings, A.J. Cytotoxicity of poly(96l/4d-lactide): The influence of degradation and sterilization. Biomaterials 2000, 21, 2433–2442. [Google Scholar] [CrossRef]
- Ivanova, M.; Filippova, E.O.; Karpov, D.A.; Pichugin, V.F. Polylactic Acid Thin Films Properties after Steam Sterilization. Inorg. Mater. Appl. Res. 2020, 11, 377–384. [Google Scholar] [CrossRef]
- Filippova, E.; Ivanova, N.M. Polylactic acid properties after steam sterilization and possibility of its using as a corneal implant. Proc. Int. Conf. Adv. Mater. HIERARCHICAL Struct. NEW Technol. Reliab. Struct. 2019, 2167, 020104. [Google Scholar] [CrossRef]
- Savaris, M.; dos Santos, V.; Brandalise, R. Influence of different sterilization processes on the properties of commercial poly(lactic acid). Mater. Sci. Eng. C 2016, 69, 661–667. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, B.; Wang, Y.; Liu, C.; Shen, C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater. Sci. Eng. C 2019, 105, 110041. [Google Scholar] [CrossRef] [PubMed]
- Rainer, A.; Centola, M.; Spadaccio, C.; Gherardi, G.; Genovese, J.A.; Licoccia, S.; Trombetta, M. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: Effectiveness vs. material degradation. Int. J. Artif. Organs 2010, 33, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Fournet, A.; Bassanino, J.; Manassero, M.; Bedu, A.-S.; Leperlier, D.; Boursier, J.-F. Reproducibility, Accuracy and Effect of Autoclave Sterilization on a Thermoplastic Three-Dimensional Model Printed by a Desktop Fused Deposition Modelling Three-Dimensional Printer. Veter- Comp. Orthop. Traumatol. 2018, 31, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Ferràs-Tarragó, J.; Sabalza-Baztán, O.; Sahuquillo-Arce, J.M.; Angulo-Sánchez, M.Á.; Amaya-Valero, J.; Ceinos, C.D.-L.-C.; Baixauli-García, F. Security of 3D-printed polylactide acid piece sterilization in the operating room: A sterility test. Eur. J. Trauma Emerg. Surg. 2021, 1–6. [Google Scholar] [CrossRef]
- Ferràs-Tarragó, J.; Sabalza-Baztán, O.; Sahuquillo-Arce, J.M.; Angulo-Sánchez, M.Á.; Ceinos, C.D.-L.-C.; Amaya-Valero, J.V.; Baixauli-García, F. Autoclave sterilization of an in-house 3D-printed polylactic acid piece: Biological safety and heat-induced deformation. Eur. J. Trauma Emerg. Surg. 2021, 1–10. [Google Scholar] [CrossRef]
- Frizziero, L.; Santi, G.; Leon-Cardenas, C.; Donnici, G.; Liverani, A.; Papaleo, P.; Napolitano, F.; Pagliari, C.; Di Gennaro, G.; Stallone, S.; et al. In-House, Fast FDM Prototyping of a Custom Cutting Guide for a Lower-Risk Pediatric Femoral Osteotomy. Bioengineering 2021, 8, 71. [Google Scholar] [CrossRef]
- Hooper, K.A.; Cox, J.D.; Kohn, J. Comparison of the effect of ethylene oxide and γ-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid). J. Appl. Polym. Sci. 1997, 63, 1499–1510. [Google Scholar] [CrossRef]
- Weir, N.; Buchanan, F.; Orr, J.; Farrar, D.; Boyd, A. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials 2004, 25, 3939–3949. [Google Scholar] [CrossRef]
- Valente, T.A.M.; Silva, D.M.; Gomes, P.; Fernandes, M.H.; Santos, J.D.; Sencadas, V. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications. ACS Appl. Mater. Interfaces 2016, 8, 3241–3249. [Google Scholar] [CrossRef] [Green Version]
- Peniston, S.J.; Choi, S.J. Effect of sterilization on the physicochemical properties of molded poly(L-lactic acid). J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 80, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Savaris, M.; Braga, G.L.; Santos, V.D.; Carvalho, G.A.; Falavigna, A.; MacHado, D.C.; Viezzer, C.; Brandalise, R.N. Bio-compatibility Assessment of Poly(lactic acid) Films after Sterilization with Ethylene Oxide in Histological Study in Vivo with Wistar Rats and Cellular Adhesion of Fibroblasts in Vitro. Int. J. Polym. Sci. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Rankin, T.M.; Giovinco, N.A.; Cucher, D.J.; Watts, G.; Hurwitz, B.; Armstrong, D.G. Three-dimensional printing surgical instruments: Are we there yet? J. Surg. Res. 2014, 189, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oth, O.; Dauchot, C.; Orellana, M.; Glineur, R. How to Sterilize 3D Printed Objects for Surgical Use? An Evaluation of the Volumetric Deformation of 3D-Printed Genioplasty Guide in PLA and PETG after Sterilization by Low-Temperature Hydrogen Peroxide Gas Plasma. Open Dent. J. 2019, 13, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Stepczyńska, M. Surface Modification by Low Temperature Plasma: Sterilization of Biodegradable Materials. Plasma Process. Polym. 2016, 13, 1080–1088. [Google Scholar] [CrossRef]
- Eisenbrey, J.R.; Hsu, J.; Wheatley, M.A. Plasma Sterilization of Poly Lactic Acid Ultrasound Contrast Agents: Surface Modification and Implications for Drug Delivery. Ultrasound Med. Biol. 2009, 35, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- Dorati, R.; Colonna, C.; Tomasi, C.; Genta, I.; Bruni, G.; Conti, B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater. Sci. Eng. C 2014, 34, 130–139. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’Heureux, N.; Fricain, J.-C.; Catros, S.; Le Nihouannen, D. Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 2018, 106, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Soriano, I.; Martín, A.; Évora, C.; Sánchez, E. Biodegradable implantable fluconazole delivery rods designed for the treatment of fungal osteomyelitis: Influence of gamma sterilization. J. Biomed. Mater. Res. Part A 2006, 77, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Torres-Giner, S.; Gimeno-Alcañiz, J.V.; Ocio, M.J.; Lagaron, J.M. Optimization of Electrospun Polylactide-Based Ultrathin Fibers for Osteoconductibe Bone Scaffolds. J. Appl. Polym. Sci. 2011, 122, 914–925. [Google Scholar] [CrossRef]
- Türker, N.S.; Özer, A.Y.; Kutlu, B.; Nohutcu, R.; Sungur, A.; Bilgili, H.; Ekizoglu, M.; Özalp, M. The effect of gamma radiation sterilization on dental biomaterials. Tissue Eng. Regen. Med. 2014, 11, 341–349. [Google Scholar] [CrossRef]
- Schnabelrauch, M.; Wyrwa, R.; Rebl, H.; Bergemann, C.; Finke, B.; Schlosser, M.; Walschus, U.; Lucke, S.; Weltmann, K.-D.; Nebe, J.B. Surface-Coated Polylactide Fiber Meshes as Tissue Engineering Matrices with Enhanced Cell Integration Properties. Int. J. Polym. Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Wang, B.; Wang, Y.; Liu, C.; Shen, C. Effect of electron beam irradiation dose on the properties of commercial biodegradable poly(lactic acid), poly(butylenes adipate-co-terephthalate) and their blends. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. At. 2020, 478, 131–136. [Google Scholar] [CrossRef]
- Loo, J.; Ooi, C.; Boey, F. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 2005, 26, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Benyathiar, P.; Selke, S.E.; Harte, B.R.; Mishra, D.K. The Effect of Irradiation Sterilization on Poly(Lactic) Acid Films. J. Polym. Environ. 2021, 29, 460–471. [Google Scholar] [CrossRef]
- Fischbach, C.; Tessmar, J.; Lucke, A.; Schnell, E.; Schmeer, G.; Blunk, T.; Göpferich, A. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf. Sci. 2001, 491, 333–345. [Google Scholar] [CrossRef]
- Janorkar, A.V.; Metters, A.T.; Hirt, D.E. Degradation of poly(L-lactide) films under ultraviolet-induced photografting and sterilization conditions. J. Appl. Polym. Sci. 2007, 106, 1042–1047. [Google Scholar] [CrossRef]
- Dillow, A.K.; Dehghani, F.; Hrkach, J.S.; Foster, N.R.; Langer, R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA 1999, 96, 10344–10348. [Google Scholar] [CrossRef] [Green Version]
- Lanzalaco, S.; Campora, S.; Brucato, V.; Pavia, F.C.; di Leonardo, E.R.; Ghersi, G.; Scialdone, O.; Galia, A. Sterilization of macroscopic poly(l-lactic acid) porous scaffolds with dense carbon dioxide: Investigation of the spatial penetration of the treatment and of its effect on the properties of the matrix. J. Supercrit. Fluids 2016, 111, 83–90. [Google Scholar] [CrossRef]
- Neches, R.; Flynn, K.J.; Zaman, L.; Tung, E.; Pudlo, N. On the intrinsic sterility of 3D printing. PeerJ 2016, 4, e2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondor, S.; Grant, C.G.; Liacouras, P.; Schmid, M.J.R.; Parsons, L.M.; Rastogi, V.K.; Smith, L.S.; Macy, B.; Sabart, B.; Macedonia, C. On Demand Additive Manufacturing of a Basic Surgical Kit. J. Med. Devices 2013, 7, 030916. [Google Scholar] [CrossRef]
- Skelley, N.W.; Hagerty, M.P.; Stannard, J.T.; Feltz, K.P.; Ma, R. Sterility of 3D-Printed Orthopedic Implants Using Fused Deposition Modeling. Orthopedics 2020, 43, 46–51. [Google Scholar] [CrossRef] [PubMed]
Method | Technique | Advantages | Disadvantages |
---|---|---|---|
Heat | Dry heat/steam | Nontoxic residues, low cost, simple, fast, effective, good penetration | Not suitable for heat-and/or moisture-sensitive materials like biodegradable polymers |
Chemical | Ethylene oxide | Low-temperature setting for heat-and/or moisture-sensitive materials, effective, good penetration | Potential hazards to staff and patients Toxic, flammable, and carcinogenic Long treatment/aeration time needed |
Peracetic acid | Low temperature, no activation required, odour or irritation not significant | Materials compatibility concerns, limited clinical use (only for immersible instruments/materials), no long-term sterile storage possible | |
Irradiation | Gamma irradiation | Nontoxic residues, low temperature, good penetration | Damaging polymers and biological materials High cost |
E-beam | Nontoxic residues, low temperature, short treatment time | Damaging polymers and biological materials, limited penetration distance | |
Plasma | H2O2 gas plasma | Nontoxic residues, low temperature setting suitable for heat-and/or moisture-sensitive materials | Not suitable for cellulose (paper), linens and liquids, and devices with hollows May cause changes in chemical and mechanical properties of polymers, produce reactive residuals |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Davila, S.; González Rodríguez, L.; Chiussi, S.; Serra, J.; González, P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers 2021, 13, 2115. https://doi.org/10.3390/polym13132115
Pérez Davila S, González Rodríguez L, Chiussi S, Serra J, González P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers. 2021; 13(13):2115. https://doi.org/10.3390/polym13132115
Chicago/Turabian StylePérez Davila, Sara, Laura González Rodríguez, Stefano Chiussi, Julia Serra, and Pío González. 2021. "How to Sterilize Polylactic Acid Based Medical Devices?" Polymers 13, no. 13: 2115. https://doi.org/10.3390/polym13132115
APA StylePérez Davila, S., González Rodríguez, L., Chiussi, S., Serra, J., & González, P. (2021). How to Sterilize Polylactic Acid Based Medical Devices? Polymers, 13(13), 2115. https://doi.org/10.3390/polym13132115