Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid
"> Figure 1
<p>Bilinear traction separation law.</p> "> Figure 2
<p>Setup of (<b>a</b>) Mode-I and (<b>b</b>) Mode-II delamination.</p> "> Figure 3
<p>Mesh size effect on Mode-I load–displacement curves.</p> "> Figure 4
<p>Convergence from coarser to a finer mesh.</p> "> Figure 5
<p>Mode-I load–displacement curve validation between experiment and simulation at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> "> Figure 6
<p>Mode-II load–displacement curve validation between experiment and simulation at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> "> Figure 7
<p>Mode-I crack front stress distribution at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> "> Figure 8
<p>Normalised Mode-I stress distribution along the crack front at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> "> Figure 9
<p>Mode-II crack front stress distribution at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> "> Figure 10
<p>Normalised Mode-II stress distribution along crack tip at (<b>a</b>) 30, (<b>b</b>) 70 and (<b>c</b>) 110 °C.</p> ">
Abstract
:1. Introduction
2. Material Modelling Constitutive Equations
2.1. Aluminium Material Modelling
2.2. GFRP Material Modelling
2.3. Cohesive Zone Modelling
3. Finite Element Modelling
4. Numerical Results and Analysis
4.1. Mesh Convergence
4.2. Load–Displacement Curves and Model Validation
4.3. Crack Initiation and Stress Distribution
5. Conclusions
- The validity of the FE model at each temperature is verified with a slope maximum difference within 5.73% for Mode-I at 110 °C and 7.26% for Mode-II at 70 °C.
- Crack front stress is concentrated in the middle for Mode-I, while stress is focused on the sides of Mode-II delamination. Results for 30 °C are characterised by a more fluctuating gradual stress variation for both modes.
- The stress distribution at 70 °C is very polarised, where all elements except the outermost one of Mode-I have practically similar peak stress, while the opposite is observable in Mode-II. A similar trend of more gradual stress variation can be discovered for 110 °C.
- DCB and ENF trends employed from experimental tests successfully obtain temperature-dependent cohesive zone properties.
- A Johnson–Cook material model with temperature dependency and Chang–Chang material model properties at each temperature ensured proper modelling of specimen bending and flexure.
- The validated temperature-dependent cohesive zone model demonstrates the applicability of the current methodology to analyse laminates at high temperatures.
Author Contributions
Funding
Conflicts of Interest
References
- Muthukumar, C.; Ishak, M.; Jawaid, M.; Leman, Z.; Sapuan, S. An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates. J. Reinf. Plast. Compos. 2016, 36. [Google Scholar] [CrossRef]
- Sadighi, M.; Alderliesten, R.C.; Benedictus, R. Impact resistance of fiber-metal laminates: A review. Int. J. Impact Eng. 2012, 49, 77–90. [Google Scholar] [CrossRef]
- Chai, G.B.; Manikandan, P. Low velocity impact response of fibre-metal laminates – A review. Compos. Struct. 2014, 107, 363–381. [Google Scholar] [CrossRef]
- Roebroeks, G.H.J.J. Fibre-metal laminates: Recent developments and applications. Int. J. Fatigue 1994, 16, 33–42. [Google Scholar] [CrossRef]
- Vlot, A.; Van Ingen, J.W. Delamination Resistance of Post-Stretched Fibre Metal Laminates. J. Compos. Mater. 1998, 32, 1784–1805. [Google Scholar] [CrossRef]
- Banea, M.D.; Rosioara, M.; Carbas, R.J.C.; da Silva, L.F.M. Multi-material adhesive joints for automotive industry. Compos. Part B Eng. 2018, 151, 71–77. [Google Scholar] [CrossRef]
- Turon, A.; Dávila, C.G.; Camanho, P.P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Turon, A.; Camanho, P.P.; Costa, J.; Renart, J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 2010, 92, 1857–1864. [Google Scholar] [CrossRef]
- LeBlanc, L.R.; LaPlante, G. Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite. Compos. Part A Appl. Sci. Manufact. 2016, 81, 202–213. [Google Scholar] [CrossRef]
- Johar, M.; Israr, H.A.; Low, K.O.; Wong, K.J. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates. J. Compos. Mater. 2017, 51, 3955–3968. [Google Scholar] [CrossRef]
- Koloor, S.S.R.; Tamin, M.N. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018, 204, 594–606. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Hua, X.; Liu, C.; Tao, J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Compos. Struct. 2018, 187, 354–363. [Google Scholar] [CrossRef]
- Manikandan, P.; Chai, G.B. Mode-I Metal-Composite Interface Fracture Testing for Fibre Metal Laminates. Adv. Mater. Sci. Eng. 2018, 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Gong, Y.; Zhang, J.; Chen, Y.; Fei, B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 2014, 116, 509–522. [Google Scholar] [CrossRef]
- Delbariani-Nejad, A.; Malakouti, M.; Farrokhabadi, A. Reliability analysis of metal-composite adhesive joints under debonding modes I, II, and I/II using the results of experimental and FEM analyses. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2644–2662. [Google Scholar] [CrossRef]
- Tsokanas, P.; Loutas, T. Hygrothermal effect on the strain energy release rates and mode mixity of asymmetric delaminations in generally layered beams. Eng. Fract. Mech. 2019, 214, 390–409. [Google Scholar] [CrossRef]
- Ramírez, F.M.G.; Garpelli, F.P.; Sales, R.d.C.M.; Cândido, G.M.; Arbelo, M.A.; Shiino, M.Y.; Donadon, M.V. Hygrothermal effects on the fatigue delamination growth onset in interlayer toughened CFRP joints. Int. J. Fatigue 2020, 138, 105729. [Google Scholar] [CrossRef]
- Tsokanas, P.; Loutas, T.; Kotsinis, G.; Kostopoulos, V.; van den Brink, W.M.; Martin de la Escalera, F. On the fracture toughness of metal-composite adhesive joints with bending-extension coupling and residual thermal stresses effect. Compos. Part B Eng. 2020, 185, 107694. [Google Scholar] [CrossRef]
- Cadieu, L.; Kopp, J.B.; Jumel, J.; Bega, J.; Froustey, C. A fracture behaviour evaluation of Glass/Elium150 thermoplastic laminate with the DCB test: Influence of loading rate and temperature. Compos. Struct. 2021, 255, 112907. [Google Scholar] [CrossRef]
- Davidson, B.D.; Kumar, M.; Soffa, M.A. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos. Part A Appl. Sci. Manufact. 2009, 40, 67–79. [Google Scholar] [CrossRef]
- Ibrahim, G.R.; Albarbar, A. A new approach to the cohesive zone model that includes thermal effects. Compos. Part B Eng. 2019, 167, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Günther, N.; Griese, M.; Stammen, E.; Dilger, K. Modeling of adhesive layers with temperature-dependent cohesive zone elements for predicting adhesive failure during the drying process of cathodic dip painting. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 2019, 233, 485–494. [Google Scholar] [CrossRef]
- Qin, G.; Na, J.; Tan, W.; Mu, W.; Ji, J. Failure prediction of adhesively bonded CFRP-Aluminum alloy joints using cohesive zone model with consideration of temperature effect. J. Adhes. 2019, 95, 723–746. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Chang, F.-K.; Chang, K.-Y. A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- Gerlach, S.; Fiolka, M.; Matzenmiller, A. Modelling and analysis of adhesively bonded joints with interface elements for crash analysis. Konf. Zum 2005, 4, 35–44. [Google Scholar]
- Chow, Z.P.; Ahmad, Z.; Wong, K.J. Experimental study of temperature effect on the mechanical properties of GFRP and FML interface. In Engineering Design Applications II: Structures, Materials and Processes; Öchsner, A., Altenbach, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Chow, Z.P.; Ahmad, Z.; Wong, K.J.; Israr, H.A. Thermo-mechanical characterisation and modelling of GFRP laminated aluminium. Compos. Part B Eng. 2019, 173, 106971. [Google Scholar] [CrossRef]
- Wen, Q.; Li, W.; Wang, W.B.; Wang, F.; Gao, Y.J.; Patel, V. Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding. J. Mater. Sci. Technol. 2018, 35. [Google Scholar] [CrossRef]
- Lesuer, D. Experimental Investigations of Material Models for TI-6A1-4V Titanium and 2024-T3 Aluminum; Lawrence Livermore National Lab.: Livermore, CA, USA, 2000. [Google Scholar]
- Li, L.; Sun, L.; Wang, T.; Kang, N.; Cao, W. Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates. Aerosp. Sci. Technol. 2019, 84, 995–1010. [Google Scholar] [CrossRef]
- Wong, K.J.; Johar, M.; Rahimian Koloor, S.S.; Petru, M.; Tamin, M. Moisture absorption effects on mode II delamination of carbon/epoxy composites. Polymers 2020, 12, 2162. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, G.; Cheng, X.; Zhang, Z.; Li, M.; Ji, S.; Huang, Z. Mode I and Mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates. Compos. Interf. 2016, 23, 453–465. [Google Scholar] [CrossRef]
Material Properties | ρ (kg/m3) | E (GPa) | G (GPa) | ν | |
2869 | 72.8 | 27.36 | 0.33 | ||
Yield surface parameters | A (MPa) | B (Mpa) | n | C | m |
369 | 684 | 0.73 | 0.0083 | 1.7 | |
Failure parameters | d1 | d2 | d3 | d4 | d5 |
0.13 | 0.13 | −1.5 | 0.011 | 0 |
30 °C | 70 °C | 110 °C | |
---|---|---|---|
νAB | 0.321 | 0.335 | 0.239 |
EA (GPa) | 37.12 | 36.94 | 30.73 |
EB (GPa) | 9.75 | 7.65 | 2.65 |
GAB (GPa) | 5.36 | 3.27 | 0.13 |
XT (MPa) | 750.67 | 719.48 | 441.77 |
YT (MPa) | 58.40 | 52.88 | 20.79 |
XC (MPa) | 816.53 | 658.42 | 551.52 |
YC (MPa) | 168.51 | 128.44 | 94.74 |
SC (MPa) | 94.93 | 52.57 | 6.54 |
β | 0.5 | 0.5 | 0.5 |
Mode-I | Mode-II | |||||
---|---|---|---|---|---|---|
30 °C | 70 °C | 110 °C | 30 °C | 70 °C | 110 °C | |
k (N/mm) | 12.57 ± 0.15 | 12.47 ± 0.46 | 7.25 ± 0.08 | 239.97 ± 7.10 | 134.50 ± 1.91 | 91.97 ± 2.59 |
FP (N) | 34.51 ± 2.42 | 22.04 ± 1.23 | 10.55 ± 0.16 | 297.3 ± 4.63 | 208.32 ± 10.48 | 74.97 ± 2.34 |
30 °C | 70 °C | 110 °C | |
---|---|---|---|
EN (GPa) | 463.85 | 460.38 | 267.52 |
ET (GPa) | 69.23 | 38.80 | 26.53 |
GIC (J/m2) a | 169.50 | 68.74 | 27.71 |
GIIC (J/m2) a | 166.70 | 147.00 | 28.31 |
σ (MPa) | 30.00 | 12.16 | 4.90 |
τ (MPa) | 45.00 | 40.09 | 7.72 |
Temperature | 30 °C | 70 °C | 110 °C | |
---|---|---|---|---|
k (N/mm) | Experiment | 12.57 | 12.47 | 7.25 |
Simulation | 13.24 | 12.46 | 7.66 | |
Difference (%) | 5.38 | 0.13 | 5.73 | |
FP (N) | Experiment | 34.51 | 22.04 | 10.55 |
Simulation | 31.95 | 18.78 | 11.37 | |
Difference (%) | 7.42 | 14.76 | 7.83 |
Temperature | 30 °C | 70 °C | 110 °C | |
---|---|---|---|---|
k (N/mm) | Experiment | 239.97 | 134.50 | 91.97 |
Simulation | 249.85 | 144.27 | 95.63 | |
Difference (%) | 4.12 | 7.26 | 3.99 | |
FP (N) | Experiment | 297.30 | 208.32 | 74.97 |
Simulation | 252.36 | 222.90 | 84.36 | |
Difference (%) | 15.12 | 7.00 | 12.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, Z.P.; Ahmad, Z.; Wong, K.J.; Koloor, S.S.R.; Petrů, M. Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid. Polymers 2021, 13, 492. https://doi.org/10.3390/polym13040492
Chow ZP, Ahmad Z, Wong KJ, Koloor SSR, Petrů M. Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid. Polymers. 2021; 13(4):492. https://doi.org/10.3390/polym13040492
Chicago/Turabian StyleChow, Zhen Pei, Zaini Ahmad, King Jye Wong, Seyed Saeid Rahimian Koloor, and Michal Petrů. 2021. "Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid" Polymers 13, no. 4: 492. https://doi.org/10.3390/polym13040492
APA StyleChow, Z. P., Ahmad, Z., Wong, K. J., Koloor, S. S. R., & Petrů, M. (2021). Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid. Polymers, 13(4), 492. https://doi.org/10.3390/polym13040492