Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal
"> Figure 1
<p>Schematic of crosslinking mechanism of graphene oxide (GO) reinforced double network (DN) hydrogel.</p> "> Figure 2
<p>FTIR spectra of GO, DN hydrogel, and DN hydrogels with different GO loadings.</p> "> Figure 3
<p>(<b>a</b>) TGA and (<b>b</b>) differential thermogravimetric analysis (DTG) curves of DN hydrogel and GO reinforced DN hydrogels composites.</p> "> Figure 4
<p>XRD patterns of GO, neat DN hydrogel, and GO reinforced DN hydrogels.</p> "> Figure 5
<p>SEM images of SA/PVA with different GO loadings: (<b>a</b>) neat SA/PVA; (<b>b</b>) GO1-SA/PVA; (<b>c</b>) GO3-SA/PVA; (<b>d</b>) GO5-SA/PVA; (<b>e</b>) GO7-SA/PVA.</p> "> Figure 6
<p>Stress-strain curves of neat DN hydrogel and GO reinforced DN hydrogels.</p> "> Figure 7
<p>Effects of (<b>a</b>) GO content and (<b>b</b>) solution pH on the methylene blue (MB) adsorption.</p> "> Figure 8
<p>Effects of (<b>a</b>) dosage of adsorbent and (<b>b</b>) contact time on the MB adsorption.</p> "> Figure 9
<p>(<b>a</b>) Pseudo-first-order plots, (<b>b</b>) pseudo-second-order plots, and (<b>c</b>) intraparticle diffusion plots for MB adsorption.</p> "> Figure 10
<p>Langmuir (<b>a</b>) and Freundlich (<b>b</b>) adsorption isotherm models of MB.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Graphene Oxide (GO) Reinforced SA/PVA DN Hydrogels
2.3. Characterizations
2.4. MB Adsorption Studies
3. Results and Discussion
3.1. Formation Mechanism of GO Reinforced SA/PVA DN Hydrogels
3.2. FTIR Analysis
3.3. Thermogravimetric Analysis
3.4. XRD Analysis
3.5. SEM Characterization
3.6. Mechanical Properties
3.7. MB Adsorption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahabuddin, S.; Sarih, N.M.; Kamboh, M.A.; Nodeh, H.R.; Mohamad, S. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution. Polymers 2016, 8, 305. [Google Scholar] [CrossRef]
- Elkady, M.; El-Aassar, M.; Hassan, H. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers 2016, 8, 177. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Xu, A.; Tang, K.; Huang, Y.; Lu, C. In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J. Alloys Compd. 2017, 714, 522–529. [Google Scholar] [CrossRef]
- Pawar, R.R.; Gupta, P.; Sawant, S.Y.; Shahmoradi, B.; Lee, S.M. Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int. J. Biol. Macromol. 2018, 114, 1315. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.W.; Yang, M.X.; Zhang, S.F.; Hou, C.; Song, W.Q.; Yang, J.F.; Tang, R.H. Preparation of a sustainable bioadsorbent by modifying filter paper with sodium alginate, with enhanced mechanical properties and good adsorption of methylene blue from wastewaters. Cellulose 2018, 25, 2021–2036. [Google Scholar] [CrossRef]
- Ai, L.; Li, M.; Li, L. Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J. Chem. Eng. Data 2011, 56, 3475–3483. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Fu, Y.Q.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G.M. Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: Preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour. Technol. 2012, 105, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Abou, M.T.; Abd, E.M.; Abd, E.R. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater. 2009, 168, 68–75. [Google Scholar]
- Gong, G.; Zhang, F.; Cheng, Z.; Zhou, L. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal. Int. J. Biol. Macromol. 2015, 81, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.J.; Huang, X.L.; Yang, F.; Zhao, W.F.; Zhou, X.Z.; Zhao, C.S. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr. Polym. 2018, 187, 85. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.M.A.; Ali, A.M.; Sabaa, M.W. Alginate-based hydrogel for water treatment. Desalination Water Treat. 2017, 94, 129–136. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, C.; Chu, L.; Tang, Y.; Luo, S. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour. Technol. 2016, 219, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Tavakoli, E.; Motamedi, A.; Salimi, H. Facile synthesis of extremely biocompatible double-network hydrogels based on chitosan and poly(vinyl alcohol) with enhanced mechanical properties. J. Appl. Polym. Sci. 2017, 135, 45752. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Ali, O.; Wei, Y.; Zhang, S.; Zhang, Y.; Cai, T.; Liu, C.; Luo, S. Fast Adsorption of Heavy Metal Ions by Waste Cotton Fabrics Based Double Network Hydrogel and Influencing Factors Insight. J. Hazard. Mater. 2017, 344, 1034–1042. [Google Scholar] [CrossRef]
- Jiang, X.; Xiang, N.; Zhang, H.; Sun, Y.; Zhen, L.; Hou, L. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr. Polym. 2018, 186, 377. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, C.; Peng, S.; Pan, B.; Lu, C. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydr. Polym. 2018, 182, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bandyopadhyay, P.; Kshetri, T.; Kim, N.H.; Ku, B.C.; Moon, B.; Lee, J.H. Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application. Compos. Part B 2017, 114, 339–347. [Google Scholar] [CrossRef]
- Liu, H.; Bandyopadhyay, P.; Kim, N.H.; Moon, B.; Lee, J.H. Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polym. Test. 2016, 50, 49–56. [Google Scholar] [CrossRef]
- Liu, H.; Kuila, T.; Kim, N.; Ku, B.C.; Lee, J. In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 2013, 1, 3739–3746. [Google Scholar] [CrossRef]
- Yu, Y.; Shu, Y.; Ye, L. In Situ Crosslinking of Poly(vinyl alcohol)/Graphene Oxide-Glutamic Acid Nano-composite Hydrogel as Microbial Carrier: Intercalation Structure and its Wastewater Treatment Performance. Chem. Eng. J. 2018, 336, 306–314. [Google Scholar] [CrossRef]
- Liu, S.; Bastola, A.K.; Li, L. A 3D Printable and Mechanically Robust Hydrogel based on Alginate and Graphene Oxide. Acs Appl. Mater. Interfaces 2017, 9, 41473–41481. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, M.; Xu, W.; He, S.; Men, Y. Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 2017, 486, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, Y.; Du, Q.; Wang, Z.; Xia, Y.; Yedinak, E.; Lou, J.; Ci, L. High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr. Polym. 2017, 155, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tamilarasan, R. Modeling studies: Adsorption of aniline blue by using Prosopis Juliflora carbon/Ca/alginate polymer composite beads. Carbohydr. Polym. 2013, 92, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhang, F.; Liu, L.; Zhang, Y.; Li, Y.; Li, H.; Xie, J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018, 440, 853–860. [Google Scholar] [CrossRef]
- Khalid, I.; Ahmad, M.; Minhas, M.U.; Barkat, K. Preparation and characterization of alginate-PVA-based semi-IPN: Controlled release pH-responsive composites. Polym. Bull. 2018, 75, 1075–1099. [Google Scholar] [CrossRef]
- Xiang, S.; Qian, W.; Li, T.; Wang, Y.; Chen, M.; Ma, P.; Dong, W. Hierarchical Structural Double Network Hydrogel with High Strength, Toughness, and Good Recoverability. New J. Chem. 2017, 41, 14397–14402. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Chen, W.; Li, Q.; Yan, B.; Jin, X.; Ma, A.; Liu, H.; Zhao, W. Dually synergetic network hydrogels with integrated mechanical stretchability, thermal responsiveness and electrical conductivity for strain sensors and temperature alertors. Acs Appl. Mater. Interfaces 2018, 10, 14045–14054. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 2013, 1, 7433–7443. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Lu, C.; Tang, K.; Zhang, Y. Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties. J. Mater. Sci. 2017, 52, 11715–11724. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Hu, L.; Gao, L.; Du, B.; Wei, Q. Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. Rsc Adv. 2015, 5, 9759–9770. [Google Scholar] [CrossRef]
- Dai, H.; Huang, Y.; Huang, H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2017, 185, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Omer, A.M.; Ouyang, X.K. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int. J. Biol. Macromol. 2017, 106, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, S.; Sarkar, A.; Raoufi, M.; Panda, A.B.; Schönherr, H.; Pal, S. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. Acs Appl. Mater. Interfaces 2014, 6, 4766. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Du, Q.; Sun, J.; Chen, L.; Hu, S.; Wang, Z.; Xia, Y.; Xia, L. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci. 2015, 453, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.; Jie, D.; Bei, L.; Ai, H.; Xiang, Z.; Lang, M.; Shuang, L.; Zhao, C. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J. Hazard. Mater. 2013, 263, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, Y.; Zhang, X.F.; Zhang, X.; Jiang, J.; Yao, J. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. J. Colloid Interface Sci. 2017, 514, 190. [Google Scholar] [CrossRef] [PubMed]
- Melo, B.C.; Faa, P.; Cardoso, V.A.; Agb, P.; Fajardo, A.R.; Fha, R. Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydr. Polym. 2018, 181, 358–367. [Google Scholar] [CrossRef] [PubMed]
C0 (mg∙L−1) | Pseudo-first-order model | Pseudo-second-order model | |||||
---|---|---|---|---|---|---|---|
qe (exp)(mg∙g−1) | k1 (min−1) | qe (cal)(mg∙g−1) | R2 | k2 (g∙mg−1∙min−1) | qe (cal)(mg∙g−1) | R2 | |
100 | 92.01 | 0.0037 | 59.77 | 0.9912 | 1.14 × 10−4 | 97.66 | 0.9985 |
200 | 170.12 | 0.0029 | 102.78 | 0.9899 | 5.72 × 10−5 | 179.86 | 0.9981 |
300 | 245.75 | 0.0031 | 150.61 | 0.9845 | 3.93 × 10−5 | 260.42 | 0.9977 |
400 | 295.15 | 0.0034 | 181.75 | 0.9936 | 3.67 × 10−5 | 311.53 | 0.9982 |
C0 (mg·L−1) | Step I | Step II | ||||
---|---|---|---|---|---|---|
Ki1 (mg·g−1·min−1/2) | C (mg·g−1) | R2 | Ki2 (mg·g−1·min−1/2) | C (mg·g−1) | R2 | |
100 | 3.49 | 13.06 | 0.9899 | 0.39 | 77.04 | 0.9819 |
200 | 5.97 | 28.21 | 0.9868 | 1.09 | 127.98 | 0.9825 |
300 | 9.31 | 32.32 | 0.9924 | 1.61 | 183.07 | 0.9929 |
400 | 9.70 | 60.10 | 0.9867 | 1.61 | 233.05 | 0.9773 |
Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|
qm (mg·g−1) | KL (L·mg−1) | R2 | KF | 1/n | R2 |
480.76 | 0.02 | 0.9896 | 34.11 | 0.44 | 0.9635 |
T (K) | Kc (L∙mg−1) | ΔG (kJ∙mol−1) | ΔH (kJ∙mol−1) | ΔS (J∙mol−1∙K−1) |
---|---|---|---|---|
298 | 6.94 | −4.80 | −15.45 | −35.95 |
303 | 5.96 | −4.49 | ||
313 | 4.90 | −4.14 | ||
323 | 4.25 | −3.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, H.; Xiong, T.; Xu, A.; Pan, B.; Tang, K. Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers 2018, 10, 835. https://doi.org/10.3390/polym10080835
Liu C, Liu H, Xiong T, Xu A, Pan B, Tang K. Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers. 2018; 10(8):835. https://doi.org/10.3390/polym10080835
Chicago/Turabian StyleLiu, Cuiyun, Hongyu Liu, Tianhui Xiong, Airong Xu, Bingli Pan, and Keyong Tang. 2018. "Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal" Polymers 10, no. 8: 835. https://doi.org/10.3390/polym10080835
APA StyleLiu, C., Liu, H., Xiong, T., Xu, A., Pan, B., & Tang, K. (2018). Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers, 10(8), 835. https://doi.org/10.3390/polym10080835