Scaling Correlation Analysis of Particulate Matter Concentrations of Three South Indian Cities
<p>Overall methodological framework.</p> "> Figure 2
<p>Fluctuation functions of PM2.5 and PM10 for the three cities. Upper panels show the plots of PM2.5 and lower panels show the results of PM10.</p> "> Figure 3
<p>Comparison of Renyi exponent plot and multifractal spectrum of PMs for the three cities.</p> "> Figure 4
<p>Renyi exponent and multifractal spectrum of gaseous pollutant time series for the three cities.</p> "> Figure 5
<p>Renyi exponent and multifractal spectrum of meteorological time series for the three cities.</p> "> Figure 6
<p>MFCCA of PM2.5 with meteorological parameters for Chennai. Last column depicts scaling correlations between the paired variables.</p> "> Figure 7
<p>MFCCA of PM2.5 with gaseous pollutants for Chennai. Last column depicts scaling correlations between the paired variables.</p> "> Figure 8
<p>MFCCA of PM10 with meteorological parameters for Chennai. Last column depicts scaling correlations between the paired variables.</p> "> Figure 9
<p>MFCCA of PM10 with gaseous pollutants for Chennai. Last column depicts scaling correlations between the paired variables.</p> "> Figure 10
<p>Comparison of Renyi exponent plot and multifractal spectrum of precipitation data of the three cities.</p> "> Figure 11
<p>MFCCA of rainfall (R) with PMs for Chennai. Last line depicts scaling correlations between the paired variables.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stations and Data
2.2. MFDFA and Parameters
2.3. MFCCA
3. Results and Discussion
3.1. MFDFA
3.2. Scaling Correlation Analysis Using MFCCA Method
3.3. Effect of Precipitation on PM Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ogawa, S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Zhu, H. A time-scaling property of air pollution indices: A case study of Shanghai, China. Atmos. Pollut. Res. 2015, 6, 886–892. [Google Scholar] [CrossRef]
- Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time resolution. Comput. Aided Chem. Eng. 2018, 43, 193–198. [Google Scholar] [CrossRef]
- Blessy, A.; Paul, J.J.; Gautam, S.; Shany, J.V.; Sreenath, M. IoT-based air quality monitoring in hair salons: Screening of hazardous air pollutants based on personal exposure and health risk assessment. Water Air Soil Pollut. 2023, 234, 336. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman Press: New York, NY, USA, 1982. [Google Scholar]
- Plocoste, T.; Calif, R.; Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in Caribbean region. Atmos. Environ. 2017, 169, 22–35. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Bunde, E.K.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2022, 316, 87–114. [Google Scholar] [CrossRef]
- Lee, C.K. Multifractal characteristics in air pollutant concentration time series. Water Air Soil Pollut. 2002, 135, 389–409. [Google Scholar] [CrossRef]
- Lee, C.K.; Ho, D.S.; Yu, C.C.; Wang, C.C. Fractal analysis of temporal variation of air pollutant concentration by box counting. Environ. Model. Soft. 2003, 18, 243–251. [Google Scholar] [CrossRef]
- Lee, C.K.; Juang, L.C.; Wang, C.C.; Liao, Y.Y.; Yu, C.C.; Liu, Y.C.; Ho, D.S. Scaling characteristics in ozone concentration time series (OCTS). Chemosphere 2006, 62, 934–946. [Google Scholar] [CrossRef]
- Yuval, D.; Broday, M. Studying the time scale dependence of environmental variables predictability using fractal analysis. Environ. Sci. Technol. 2010, 44, 4629–4634. [Google Scholar] [PubMed]
- He, H.D.; Pan, W.; Lu, W.Z.; Xue, Y.; Peng, G.H. Multifractal property and long-range cross-correlation behavior of particulate matters at urban traffic intersection in Shanghai. Stoch. Environ. Res. Risk Assess. 2016, 30, 1515–1523. [Google Scholar] [CrossRef]
- Chelani, A.B. Long-memory property in air pollutant concentrations. Atmos. Res. 2016, 171, 1–4. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Y.; Peizhi, L. Multifractal behavior of an air pollutant time series and the relevance to the predictability. Environ. Pollut. 2017, 222, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, X.; Shi, H. Multifractal cascade analysis on the nature of air pollutants concentration time series over China. Aero. Air Qual. Res. 2019, 19, 2100–2114. [Google Scholar] [CrossRef]
- Wang, Q. Multifractal characterization of air polluted time series in China. Phys. A Stat. Mech. Appl. 2019, 514, 167–180. [Google Scholar] [CrossRef]
- Li, X. On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China. Phys. A Stat. Mech. Appl. 2021, 565, 125551. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Cantzos, D. Long-memory traces in PM10 time series in Athens, Greece: Investigation through DFA and R/S analysis. Meteorol. Atmos. Phys. 2021, 133, 261–279. [Google Scholar] [CrossRef]
- Plocoste, T.; Carmona-Cabezas, R.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E.; Calif, R. Multifractal characterisation of particulate matter (PM10) time series in the Caribbean basin using visibility graphs. Atmos. Pollut. Res. 2021, 12, 100–110. [Google Scholar] [CrossRef]
- Plocoste, T.; Carmona-Cabezas, R.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E. Background PM10 atmosphere: In the seek of a multifractal characterization using complex networks. J. Aerosol Sci. 2021, 155, 105777. [Google Scholar] [CrossRef]
- Masseran, N. Multifractal characteristics on temporal maximum of air pollution series. Mathematics 2022, 10, 3910. [Google Scholar] [CrossRef]
- Masseran, N. Power-law behaviors of the severity levels of unhealthy air pollution events. Nat. Haz. 2022, 112, 1749–1766. [Google Scholar] [CrossRef]
- Shi, K.; Liu, C.; Li, Y.; Du, J. The difference of multifractality of black carbon, NOx and CO at traffic site and its implications for air pollution sources. Stoch. Environ. Res. Risk Assess. 2021, 35, 1715–1723. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Wang, R.; Zhang, L. Backward trajectory and multifractal analysis of air pollution in Zhengzhou region of China. Math. Prob. Eng. 2022, 2022, 2226565. [Google Scholar] [CrossRef]
- Shen, C.; Huang, Y.; Yan, Y. An analysis of multifractal characteristics of API time series in Nanjing, China. Phys. A Stat. Mech. Appl. 2016, 451, 171–179. [Google Scholar] [CrossRef]
- Plocoste, T.; Pavón-Domínguez, P.; Sankaran, A.; Euphrasie-Clotilde, L. Investigation of PM2.5 and PM10 Dynamics in the Caribbean Basin Using a Multifractal Framework. Water Air Soil Pollut. 2024, 235, 732. [Google Scholar] [CrossRef]
- N’Gobi, G.K.; Agbazo, M.N.; Leode, A. Fractal description of the temporal fluctuation of PM2.5 and PM10 concentrations and their cross-correlation at Cotonou autonomous port and the “Boulevard de laMarina” area (Benin Republic, West Africa). Pollution 2023, 9, 628–645. [Google Scholar] [CrossRef]
- Fuwape, I.; Ogunjo, S.; Akinsusi, J.; Rabiu, B.; Jenkins, G. Multifractal detrended fluctuation analysis of particulate matter and atmospheric variables at different time scales. Meteorol. Atmos. Phys. 2023, 135, 27. [Google Scholar] [CrossRef]
- Adarsh, S.; Plocoste, T.; Rajakrishnan, A.; Thodika, R.C.; Rema, R.A.; Dharman, S.; Madhukumar, M. Multiscale coherence analysis of PM2.5 and PM10 concentrations of four Indian urban areas using wavelet transform. Urban Clim. 2024, 56, 102056. [Google Scholar]
- Manimaran, P.; Narayana, A.C. Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India. Phys. A Stat. Mech. Appl. 2018, 502, 228–235. [Google Scholar] [CrossRef]
- Chelani, A.B.; Gautam, S. Lockdown during COVID-19 pandemic: A case study from Indian cities shows insignificant effects on persistent property of urban air quality. Geosci. Front. 2022, 13, 101284. [Google Scholar] [CrossRef] [PubMed]
- Chelani, A.B.; Gautam, S. Fractality in PM2.5 Concentrations during the dry and wet season over Indo-Gangetic Plain, India. Water Air Soil Pollut. 2023, 234, 502. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Nonstationary Time Series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.X. Multifractal detrended cross-correlation analysis for two non-stationary signals. Phys. Rev. E 2008, 77, 066211. [Google Scholar] [CrossRef]
- Oświȩcimka, P.; Drożdż, S.; Forczek, M.; Jadach, S.; Kwapień, J. Detrended cross-correlation analysis consistently extended to multifractality. Phys. Rev. E 2014, 89, 023305. [Google Scholar] [CrossRef]
- Wątorek, M.; Drożdż, S.; Oświęcimka, P.; Stanuszek, M. Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Econ. 2019, 81, 874–885. [Google Scholar] [CrossRef]
- Adarsh, S.; Plocoste, T.; Nourani, N.; Vahab, S.; Salim, A. Assessment of multifractal fingerprints of reference evapotranspiration based on multivariate empirical mode decomposition. Atmosphere 2023, 14, 1219. [Google Scholar] [CrossRef]
- Kumar, K.; Pande, B.P. Air pollution prediction with machine learning: A case study of Indian cities. Int. J. Environ. Sci. Technol. 2023, 20, 5333–5348. [Google Scholar] [CrossRef]
- Mohan, A.S.; Abraham, L. An ensemble deep learning model for forecasting hourly PM2.5 concentrations. IETE J. Res. 2023, 69, 6832–6845. [Google Scholar] [CrossRef]
- Rubin, D.B. Statistical matching using file concatenation with adjusted weights and multiple imputations. J. Busi. Econ. Stat. 1986, 4, 87–94. [Google Scholar] [CrossRef]
- Ihlen, E.A.F.E. Introduction to multifractal detrended fluctuation analysis in MATLAB. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Kwapień, J.; Oświęcimka, P.; Drożdż, S. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E 2015, 92, 052815. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, R.B.; Cleveland, W.S. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–33. [Google Scholar]
- Li, E.; Mu, X.; Zhao, G.; Gao, P. Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin, China. Water 2015, 7, 1670–1686. [Google Scholar] [CrossRef]
- Plocoste, T.; Pavón-Domínguez, P. Multifractal detrended cross-correlation analysis of wind speed and solar radiation. Chaos 2020, 30, 113109. [Google Scholar] [CrossRef]
- Yin, H.; Jin, D.; Gu, Y.H.; Park, C.J.; Han, S.K.; Yoo, S.J. STL-ATTLSTM: Vegetable price forecasting using STL and attention mechanism-based LSTM. Agriculture 2020, 10, 612. [Google Scholar] [CrossRef]
- Pamula, G.; Grech, D. Influence of the maximal fluctuation moment order q on multifractal records normalized by finite-size effects. Europhys. Lett. 2014, 105, 50004. [Google Scholar] [CrossRef]
- Baranowski, P.; Gos, M.; Krzyszczak, J.; Siwek, K.; Kieliszek, A.; Tkaczyk, P. Multifractality of meteorological time series for Poland on the base of MERRA-2 data. Chaos Solitons Fractals 2019, 127, 318–333. [Google Scholar] [CrossRef]
- Sankaran, A.; Krzyszczak, J.; Baranowski, P.; Devarajan Sindhu, A.; Kumar, N.P.; Lija Jayaprakash, N.; Thankamani, V.; Ali, M. Multifractal Cross Correlation Analysis of Agro-Meteorological Datasets (Including Reference Evapotranspiration) of California, United States. Atmosphere 2020, 11, 1116. [Google Scholar] [CrossRef]
- Kulmala, M. How particles nucleate and grow. Science 2003, 302, 1000–1001. [Google Scholar] [CrossRef]
- Schlesinger, R.B. The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: A critical review. Inhal. Toxicol. 2007, 19, 811–832. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Nati. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Khare, V.R.; Vajpai, A.; Gupta, D. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 2021, 37, 100845. [Google Scholar] [CrossRef]
- Veena, K.; Parammasivam, K.M.; Venkatesh, T.N. Urban Heat Island studies: Current status in India and a comparison with the International studies. J. Earth Syst. Sci. 2020, 129, 85. [Google Scholar] [CrossRef]
- Mohan, M.; Kikegawa, Y.; Gurjar, B.R.; Bhati, S.; Kandya, A.; Ogawa, K. Urban heat island assessment for a tropical urban airshed in India. Atmos. Clim. Sci. 2012, 2, 127–138. [Google Scholar] [CrossRef]
- Aiswarya, R.; Resmi, A.R.; Rahsha, C.T.; Dharman, S.; Adarsh, S.; Mamatha, M. Analyzing the effect of air pollutants on particulate matter concentrations of the tropical coastal city of Thiruvananthapuram, India by wavelet coherence. IOP Conf. Ser. Earth Environ. Sci. 2023, 1237, 012017. [Google Scholar] [CrossRef]
- Fattah, M.A.; Morshed, S.R.; Kafy, A.A.; Rahaman, Z.A.; Rahman, M.T. Wavelet coherence analysis of PM2.5 variability in response to meteorological changes in South Asian cities. Atmos. Pollut. Res. 2023, 14, 101737. [Google Scholar] [CrossRef]
- Plocoste, T. Multiscale analysis of the dynamic relationship between particulate matter (PM10) and meteorological parameters using CEEMDAN: A focus on “Godzilla” African dust event. Atmos. Pollut. Res. 2022, 13, 101252. [Google Scholar] [CrossRef]
- Johny, K.; Pai, M.L.; Adarsh, S. A multivariate EMD-LSTM model aided with Time Dependent Intrinsic Cross-Correlation for monthly rainfall prediction. Appl. Soft Comp. 2022, 123, 108941. [Google Scholar] [CrossRef]
- Sonwani, S.; Kulshrestha, U.C. PM10 carbonaceous aerosols and their real-time wet scavenging during monsoon and non-monsoon seasons at Delhi, India. J. Atmos. Chem. 2019, 76, 171–200. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, L.; Yan, C.; Du, J.; Li, Y.; Zhao, H. Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere. Adv. Meteorol. 2020, 2020, 5039613. [Google Scholar] [CrossRef]
- Plocoste, T.; Carmona-Cabezas, R.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Wet scavenging process of particulate matter (PM10): A multivariate complex network approach. Atmos. Pollut. Res. 2021, 12, 101095. [Google Scholar] [CrossRef]
- Çapraz, Ö.; Deniz, A. Particulate matter (PM10 and PM2.5) concentrations during a Saharan dust episode in Istanbul. Air Qual. Atmos. Health 2021, 14, 109–116. [Google Scholar] [CrossRef]
- Adarsh, S.; Sulaiman, S.; Murshida, K.K.; Nooramol, P. Scale-dependent prediction of reference evapotranspiration based on Multivariate Empirical Mode Decomposition. Ain Shams Eng. J. 2018, 9, 1839–1848. [Google Scholar] [CrossRef]
Variable | H | W | AI | Δh(q) | ΔH | α0 |
---|---|---|---|---|---|---|
(a) Chennai | ||||||
PM2.5 | 0.525 | 1.042 | −0.286 | −0.587 | 0.581 | 0.683 |
PM10 | 0.642 | 0.647 | −0.316 | −0.361 | 0.341 | 0.736 |
RH | 0.813 | 0.380 | 0.835 | 0.582 | 0.200 | 0.823 |
T | 0.814 | 0.736 | 0.885 | 0.966 | 0.450 | 0.830 |
U | 0.671 | 0.241 | 0.815 | 0.456 | 0.091 | 0.670 |
SR | 0.743 | 0.323 | 0.920 | 0.619 | 0.156 | 0.749 |
NOx | 0.664 | 1.595 | 0.246 | 0.291 | 1.065 | 0.870 |
O3 | 0.700 | 0.526 | 0.200 | 0.207 | 0.253 | 0.739 |
SO2 | 0.759 | 0.231 | 0.725 | 0.365 | 0.112 | 0.770 |
CO | 0.714 | 0.868 | 0.380 | 0.300 | 0.542 | 0.786 |
(b) Hyderabad | ||||||
PM2.5 | 0.761 | 0.798 | 0.285 | 0.349 | 0.484 | 0.859 |
PM10 | 0.658 | 0.554 | 0.238 | 0.207 | 0.333 | 0.730 |
RH | 0.710 | 1.102 | 0.705 | 0.897 | 0.710 | 0.748 |
T | 0.807 | 0.939 | 0.154 | 0.177 | 0.584 | 0.943 |
U | 0.650 | 0.553 | 0.277 | 0.284 | 0.313 | 0.711 |
SR | 0.691 | 0.718 | 0.326 | 0.320 | 0.427 | 0.766 |
NOx | 0.961 | 0.889 | 0.574 | 0.623 | 0.574 | 1.022 |
O3 | 0.862 | 1.047 | 0.357 | 0.401 | 0.707 | 0.997 |
SO2 | 0.796 | 0.834 | −0.135 | −0.130 | 0.569 | 1.008 |
CO | 0.778 | 0.637 | 0.139 | 0.083 | 0.329 | 0.827 |
(c) Vishakhapatnam | ||||||
PM2.5 | 0.749 | 0.617 | 0.169 | 0.137 | 0.400 | 0.849 |
PM10 | 0.729 | 0.536 | 0.214 | 0.170 | 0.333 | 0.804 |
RH | 0.728 | 0.412 | 0.518 | 0.382 | 0.236 | 0.763 |
T | 0.861 | 0.717 | −0.193 | −0.205 | 0.444 | 1.007 |
U | 0.734 | 0.323 | 0.073 | 0.021 | 0.178 | 0.773 |
SR | 0.612 | 0.585 | 0.170 | 0.120 | 0.340 | 0.682 |
NOx | 0.722 | 0.468 | −0.238 | −0.222 | 0.248 | 0.790 |
O3 | 0.653 | 1.411 | 0.352 | 0.544 | 0.939 | 0.820 |
SO2 | 0.909 | 0.544 | 0.312 | 0.256 | 0.356 | 0.991 |
CO | 0.857 | 0.665 | 0.252 | 0.266 | 0.390 | 0.936 |
Variable Pair | Hx | Hy | Hxy | ρs | ρa | ρ | Wx | Wy | Wxy | AIx | AIy | AIxy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5-RH | 0.562 | 0.814 | 0.688 | 0.253 | 0.242 | 0.215 | 1.054 | 0.327 | 0.639 | 0.210 | −1.355 | 0.313 |
PM2.5-T | 0.562 | 0.815 | 0.688 | −0.149 | −0.108 | −0.157 | 1.054 | 0.724 | 0.593 | 0.210 | −1.103 | 0.064 |
PM2.5-U | 0.562 | 0.658 | 0.610 | −0.161 | −0.068 | −0.144 | 1.054 | 0.312 | 0.422 | 0.210 | −0.698 | 0.284 |
PM2.5-SR | 0.562 | 0.699 | 0.631 | −0.095 | −0.408 | −0.190 | 1.054 | 0.403 | 0.385 | 0.210 | −1.043 | 0.107 |
PM2.5-NOx | 0.562 | 0.656 | 0.609 | 0.029 | 0.190 | 0.162 | 1.054 | 0.606 | 0.328 | 0.210 | −0.062 | −0.206 |
PM2.5-O3 | 0.562 | 0.740 | 0.651 | −0.106 | −0.053 | 0.004 | 1.054 | 0.304 | 0.395 | 0.210 | −0.676 | −0.076 |
PM2.5-SO2 | 0.562 | 0.712 | 0.637 | 0.008 | 0.112 | −0.012 | 1.054 | 0.942 | 0.699 | 0.210 | −0.569 | −0.455 |
PM2,5-CO | 0.562 | 0.731 | 0.646 | 0.245 | 0.181 | 0.190 | 1.054 | 0.233 | 0.347 | 0.210 | −1.406 | −0.141 |
PM10-RH | 0.647 | 0.814 | 0.730 | 0.335 | 0.177 | 0.230 | 0.644 | 0.327 | 0.444 | 0.000 | −1.355 | 0.071 |
PM10-T | 0.647 | 0.815 | 0.731 | −0.376 | −0.294 | −0.273 | 0.644 | 0.724 | 0.437 | 0.000 | −1.103 | −0.244 |
PM10-U | 0.647 | 0.658 | 0.652 | 0.043 | 0.340 | 0.052 | 0.644 | 0.312 | 0.214 | 0.000 | −0.698 | 0.173 |
PM10-SR | 0.647 | 0.699 | 0.673 | 0.083 | 0.145 | 0.013 | 0.644 | 0.403 | 0.318 | 0.000 | −1.043 | −0.041 |
PM10-NOx | 0.647 | 0.656 | 0.651 | −0.054 | −0.272 | 0.028 | 0.644 | 0.606 | 0.230 | 0.000 | −0.062 | −0.183 |
PM10-O3 | 0.647 | 0.740 | 0.693 | −0.067 | 0.114 | 0.067 | 0.644 | 0.304 | 0.276 | 0.000 | −0.676 | −0.104 |
PM10-SO2 | 0.647 | 0.712 | 0.679 | 0.023 | −0.066 | 0.022 | 0.644 | 0.942 | 0.606 | 0.000 | −0.569 | −0.403 |
PM10-CO | 0.647 | 0.731 | 0.689 | −0.027 | −0.397 | −0.042 | 0.644 | 0.233 | 0.052 | 0.000 | −1.406 | −3.526 |
Variable Pair | Chennai | Hyderabad | Vishakhapatnam |
---|---|---|---|
PM2.5-RH | P | N | M |
PM2.5-T | N | M | M |
PM2.5-U | M | N | M |
PM2.5-SR | N | M | M |
PM2.5-NOx | M | M | P |
PM2.5-O3 | M | P | M |
PM2.5-SO2 | M | M | M |
PM2.5-CO | M | P | P |
PM10-RH | P | N | M |
PM10-T | M | M | M |
PM10-U | M | N | N |
PM10-SR | M | P | M |
PM10-NOx | M | P | P |
PM10-O3 | M | M | P |
PM10-SO2 | M | M | M |
PM10-CO | M | P | P |
City | H | W | AI | Δh(q) | Δf | α0 |
---|---|---|---|---|---|---|
Chennai | 0.664 | 1.595 | 0.246 | 0.291 | 1.065 | 0.870 |
Hyderabad | 0.692 | 2.392 | 0.389 | 0.368 | 1.939 | 1.106 |
Vishakhapatnam | 0.464 | 2.522 | 0.133 | −0.143 | 1.981 | 1.028 |
City | Variable Pair | Hx | Hy | Hxy | ρs | ρa | ρ | Wx | Wy | Wxy | AIx | AIy | AIxy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chennai | PM2.5-R | 0.562 | 0.727 | 0.644 | 0.064 | 0.383 | 0.012 | 1.054 | 1.346 | 0.800 | 0.210 | −0.251 | −0.229 |
Hyderabad | PM2.5-R | 0.862 | 0.641 | 0.751 | −0.181 | −0.199 | −0.104 | 0.699 | 3.364 | 1.349 | −0.211 | −0.344 | −0.251 |
Vishakhapatnam | PM2.5-R | 0.807 | 0.518 | 0.663 | −0.306 | −0.042 | −0.125 | 0.584 | 3.867 | 1.339 | −0.039 | −0.275 | 0.021 |
Chennai | PM10-R | 0.647 | 0.727 | 0.687 | 0.044 | 0.020 | −0.044 | 0.644 | 1.346 | 0.836 | 0.000 | −0.251 | −0.195 |
Hyderabad | PM10-R | 0.785 | 0.641 | 0.713 | −0.245 | −0.216 | −0.145 | 0.532 | 3.364 | 1.336 | −0.117 | −0.344 | −0.251 |
Vishakhapatnam | PM10-R | 0.753 | 0.518 | 0.636 | −0.281 | −0.465 | −0.163 | 0.449 | 3.867 | 1.262 | 0.026 | −0.275 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, A.; Rajesh, S.M.; Bahuleyan, M.; Plocoste, T.; Santhoshkhan, S.; Lekha, A. Scaling Correlation Analysis of Particulate Matter Concentrations of Three South Indian Cities. Pollutants 2024, 4, 498-514. https://doi.org/10.3390/pollutants4040034
Sankaran A, Rajesh SM, Bahuleyan M, Plocoste T, Santhoshkhan S, Lekha A. Scaling Correlation Analysis of Particulate Matter Concentrations of Three South Indian Cities. Pollutants. 2024; 4(4):498-514. https://doi.org/10.3390/pollutants4040034
Chicago/Turabian StyleSankaran, Adarsh, Susan Mariam Rajesh, Muraleekrishnan Bahuleyan, Thomas Plocoste, Sumayah Santhoshkhan, and Akhila Lekha. 2024. "Scaling Correlation Analysis of Particulate Matter Concentrations of Three South Indian Cities" Pollutants 4, no. 4: 498-514. https://doi.org/10.3390/pollutants4040034