Determining Asymptotic Stability and Robustness of Networked Systems
<p>Four different coupling configurations. Here, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> in (<b>a</b>,<b>c</b>,<b>d</b>), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math> in (<b>b</b>), and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>).</p> "> Figure 2
<p>Schematic view of a continuous stirred tank reactor.</p> "> Figure 3
<p>Phase plot with vector field and corresponding contour lines, for the system described by Equation (<a href="#FD16-systems-08-00039" class="html-disp-formula">16</a>), and regions that bound solutions (red dashed lines). For coupling of a few such systems as in Equation (<a href="#FD1-systems-08-00039" class="html-disp-formula">1</a>) and for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math>, solutions are bounded by the black solid lines.</p> ">
Abstract
:1. Introduction
2. Asymptotic Stability of Coupled Dynamical Systems
2.1. Unique Equilibrium Point
2.2. Multiple Equilibrium Points
2.3. Computational Implementation
2.3.1. Coupled Linear Systems
2.3.2. Coupled Nonlinear Systems
- Consider a rational function , , where and are polynomial functions. Then, if (9) is feasible with or with if .
- If
- Finally, the computational time necessary to solve SOS decomposition problems scales badly with the size of the problem, as the length of vector is .
2.4. Different Coupling Configurations
- (a)
- All-to-all coupling (): .
- (b)
- Star-configuration: .
- (c)
- Ring of diffusively coupled systems: .
- (d)
- Ring of -nearest neighbour coupled systems [29]: if .
3. Coupled Continuous Stirred Tank Reactors
4. Discussion and Conclusions
Funding
Conflicts of Interest
Notation
real numbers, real matrices | |
th entry of matrix | |
the identity matrix, | |
transpose of matrix | |
derivative of x with respect to time variable t | |
, | matrix A is positive definite, matrix B is positive semidefinite |
, | matrix A is negative definite, matrix B is negative semidefinite |
, , | The Kronecker product: |
References
- Bulatov, Y.N.; Kryukov, A.V. A multi-agent control system of distributed generation plants. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia, 16–19 May 2017. [Google Scholar]
- Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Yang, F.; Han, Q.L. Distributed networked control systems: A brief overview. Inf. Sci. 2017, 380, 117–131. [Google Scholar] [CrossRef]
- Pajic, M.; Sundaram, S.; Pappas, G.J.; Mangharam, R. The wireless control network: A new approach for control over networks. IEEE Trans. Autom. Control 2011, 56, 2305–2318. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, A.M.; Lopes, S.R.; Viana, R.L. Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat. Physica A 2004, 338, 335–355. [Google Scholar] [CrossRef]
- Vespignani, A. Twenty years of network science. Nature 2018, 558, 528–529. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Barabási, A.L. Control principles of complex systems. Rev. Mod. Phys. 2016, 88, 035006. [Google Scholar] [CrossRef] [Green Version]
- Zanudo, J.G.T.; Yang, G.; Albert, R. Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 7234–7239. [Google Scholar] [CrossRef] [Green Version]
- Leitold, D.; Vathy-Fogarassy, Á.; Abonyi, J. Controllability and observability in complex networks—The effect of connection types. Sci. Rep. 2017, 7, 151. [Google Scholar] [CrossRef]
- Prajna, S.; Jadbabaie, A.; Pappas, G. Stochastic Safety Verification Using Barrier Certificates. In Proceedings of the IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), Nassau, Bahamas, 14–17 December 2005; pp. 929–934. [Google Scholar]
- Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- August, E. Using Noise for Model-Testing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 968–977. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ames, A.; Egerstedt, M. Safety Barrier Certificates for Collisions-Free Multirobot Systems. IEEE Trans. Robot. 2017, 33, 661–674. [Google Scholar] [CrossRef]
- Li, M.; Shuai, Z. Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 2010, 248, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Feng, J.; Luan, X. Stability analysis for coupled systems with time-varying coupling structure. Adv. Differ. Equ. 2017, 2017, 191. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Studies in Applied Mathematics. In Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994; Volume 15. [Google Scholar]
- Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference, New Orleans, LA, USA, 2–4 September 2004. [Google Scholar]
- Löfberg, J. Automatic robust convex programming. Optim. Methods Softw. 2012, 27, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Murty, K.G.; Kabadi, S.N. Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 1987, 39, 117–129. [Google Scholar] [CrossRef]
- Parrilo, P.A. Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 2003, 96, 293–320. [Google Scholar] [CrossRef]
- Papachristodoulou, A.; Anderson, J.; Valmorbida, G.; Prajna, S.; Seiler, P.; Parrilo, P.A. SOSTOOLS—Sum of Squares Optimization Toolbox, User’s Guide. 2018. Available online: http://sysos.eng.ox.ac.uk/sostools/ (accessed on 29 October 2020).
- Belykh, V.N.; Belykh, I.V.; Hasler, M. Connection graph stability method for synchronized coupled chaotic systems. Physica D 2004, 195, 159–187. [Google Scholar] [CrossRef]
- Miekkala, U. Graph properties for splitting with grounded laplacian matrices. BIT 1993, 33, 485–495. [Google Scholar] [CrossRef]
- Jadbabaie, A.; Motee, N.; Barahona, M. On the Stability of the Kuramoto Model of Coupled Nonlinear Oscillators. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 4296–4301. [Google Scholar]
- Thurston, H.S. On the Characteristic Equations of Products of Square Matrices. Am. Math. Mon. 1931, 38, 322–324. [Google Scholar] [CrossRef]
- Barahona, M.; Pecora, L.M. Synchronization in Small-World Systems. Phys. Rev. Lett. 2002, 89, 054101. [Google Scholar] [CrossRef] [Green Version]
- Chmiel, H. Bioprozesstechnik, 3rd ed.; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Haddad, W.M.; Chellaboina, V.; August, E. Stability and Dissipativity Theory for Nonnegative Dynamical Systems: A Thermodynamic Framework for Biological and Physiological Systems. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), Orlando, FL, USA, 4–7 December 2001; pp. 442–458. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
August, E. Determining Asymptotic Stability and Robustness of Networked Systems. Systems 2020, 8, 39. https://doi.org/10.3390/systems8040039
August E. Determining Asymptotic Stability and Robustness of Networked Systems. Systems. 2020; 8(4):39. https://doi.org/10.3390/systems8040039
Chicago/Turabian StyleAugust, Elias. 2020. "Determining Asymptotic Stability and Robustness of Networked Systems" Systems 8, no. 4: 39. https://doi.org/10.3390/systems8040039