Estimation of Arterial Path Flow Considering Flow Distribution Consistency: A Data-Driven Semi-Supervised Method
<p>Schematic of arterial scenario equipped with AVI devices.</p> "> Figure 2
<p>A signalized arterial structure.</p> "> Figure 3
<p>Data-driven semi-supervised arterial path flow estimation problem description.</p> "> Figure 4
<p>Framework of the proposed method.</p> "> Figure 5
<p>Semi-supervised arterial path flow estimation based on GCN.</p> "> Figure 6
<p>Topology connection diagram.</p> "> Figure 7
<p>Multi-knowledge graph fusion based on RGCN.</p> "> Figure 8
<p>The structure of the path flow estimation based on multiple knowledge graphs.</p> "> Figure 9
<p>The structure of the typical GAN.</p> "> Figure 10
<p>The structure of the multi-knowledge graph GAN model.</p> "> Figure 11
<p>The geometric layout of the studied site.</p> "> Figure 12
<p>The time distribution patterns of path flows in the studied arterial. (This figure serves as the foundation for calculating the temporal similarity and potential correlations between different paths. Based on these calculations, the temporal similarity graph and potential correlation graph within the multi-knowledge graph structure are constructed. We utilized the dynamic time warping (DTW) algorithm and the maximal information coefficient (MIC) algorithm to compute the temporal similarity and potential correlations based on the flow information of each path. These correlations are crucial for identifying patterns and dependencies that can inform the model’s output).</p> "> Figure 13
<p>The corresponding adjacency matrices of the three knowledge graphs. (<b>a</b>) Topological connectivity graph. Each cell in the matrix represents the connectivity between two paths, with darker colors indicating stronger connections and reflecting higher topological proximity. This graph helps to capture the structural relationships between different paths in the arterial. (<b>b</b>) Temporal similarity graph. Each cell represents the temporal similarity between two paths, with darker colors indicating higher similarity. This graph captures the dynamic nature of traffic flow over time, providing insights into how different paths behave similarly during specific time intervals. (<b>c</b>) Potential correlation graph. Each cell represents the potential correlation between two paths, with darker colors indicating stronger correlations. This graph highlights the statistical dependencies and interactions between different paths. During the estimation process, the model utilizes RGCN to extract feature information from the topological connectivity graph, temporal similarity graph, and potential correlation graph. By deeply fusing these features, the model can leverage the characteristics of other paths that have strong associations with the target path, thereby enhancing the estimation accuracy.</p> "> Figure 14
<p>The four paths with the best estimation performance. (<b>a</b>) Path1-5, (<b>b</b>) Path2-3, (<b>c</b>) Path5-2, and (<b>d</b>) Path5-4.</p> "> Figure 15
<p>The four paths with the worst estimation performance. (<b>a</b>) Path3-5, (<b>b</b>) Path2-5, (<b>c</b>) Path4-2, and (<b>d</b>) Path4-5.</p> "> Figure 16
<p>Critical path recognition reliability analysis. (<b>a</b>) SSM model, and (<b>b</b>) MKG-GAN model.</p> "> Figure 17
<p>Schematic of long-distance arterial scenario.</p> "> Figure 18
<p>Percentage of unobserved paths whose estimates satisfy different R<sup>2</sup> values.</p> "> Figure 19
<p>Estimated performance of MKG-GAN model with different CV penetration rates for different traffic conditions.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Problem Statement
4. Materials and Methods
4.1. Path Flow Estimation Model Based on Multiple Knowledge Graphs
4.1.1. Semi-Supervised Road Flow Estimation Model Based on Graph Convolutional Network
4.1.2. Multi-Knowledge Graphs Construction
4.1.3. Multi-Knowledge Graph Integration Based on Relational Graph Convolutional Network
4.2. A Path Flow Estimation Framework Based on Generative Adversarial Networks for Incorporating Flow Distribution Consistency
4.2.1. Generative Adversarial Network Architecture
4.2.2. Multi-Knowledge Graph GAN Model (MKG-GAN)
5. Experiment
5.1. Description of Research Object and Data Set
5.2. Evaluation Methods and Indicators
5.3. Parameter Settings
5.4. Analysis of Experimental Results
5.5. Critical Path Recognition Reliability Analysis
5.6. Sensitivity Analysis
5.7. Reliability Analysis for Long-Distance Arterial
5.8. Research Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Little, J.; Kelson, M.; Gartner, N. Maxband: A program for setting signals on arteries and triangular networks. In Transportation Research Record 795; TRB, National Research Council: Washington, DC, USA, 1981. [Google Scholar]
- Yang, X.; Cheng, Y.; Chang, G.-L. A multi-path progression model for synchronization of arterial traffic signals. Transp. Res. Part C Emerg. Technol. 2015, 53, 93–111. [Google Scholar] [CrossRef]
- Arsava, T.; Xie, Y.; Gartner, N.H. Arterial progression optimization using OD-BAND: Case study and extensions. Transp. Res. Rec. 2016, 2558, 1–10. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Lu, Y. A multi-path arterial progression model with variable signal structures. Transp. A Transp. Sci. 2022, 19, 2101708. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Chen, P. Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2020, 111, 135–155. [Google Scholar] [CrossRef]
- Harlow, C.; Peng, S. Automatic vehicle classification system with range sensors. Transp. Res. Part C Emerg. Technol. 2001, 9, 231–247. [Google Scholar] [CrossRef]
- Zhu, F.; Ukkusuri, S.V. An Optimal Estimation Approach for the Calibration of the Car-Following Behavior of Connected Vehicles in a Mixed Traffic Environment. IEEE Trans. Intell. Transp. Syst. 2017, 18, 282–291. [Google Scholar] [CrossRef]
- Feng, J.; Du, C.; Mu, Q. Traffic Flow Prediction Based on Federated Learning and Spatio-Temporal Graph Neural Networks. ISPRS Int. J. Geo-Inf. 2024, 13, 210. [Google Scholar] [CrossRef]
- Lu, S.; Chen, H.; Teng, Y. Multi-Scale Non-Local Spatio-Temporal Information Fusion Networks for Multi-Step Traffic Flow Forecasting. ISPRS Int. J. Geo-Inf. 2024, 13, 71. [Google Scholar] [CrossRef]
- Safdar, M.; Zhong, M.; Ren, Z.; Hunt, J.D. An Integrated Framework for Estimating Origins and Destinations of Multimodal Multi-Commodity Import and Export Flows Using Multisource Data. Systems 2024, 12, 406. [Google Scholar] [CrossRef]
- Chang, G.-L.; Wu, J. Recursive estimation of time-varying origin-destination flows from traffic counts in freeway corridors. Transp. Res. Part B Methodol. 1994, 28, 141–160. [Google Scholar] [CrossRef]
- Rao, W.; Wu, Y.-J.; Xia, J.; Ou, J.; Kluger, R. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Transp. Res. Part C Emerg. Technol. 2018, 95, 29–46. [Google Scholar] [CrossRef]
- Lou, Y.; Yin, Y. A decomposition scheme for estimating dynamic origin–destination flows on actuation-controlled signalized arterials. Transp. Res. Part C Emerg. Technol. 2010, 18, 643–655. [Google Scholar] [CrossRef]
- Chang, G.-L.; Tao, X. Estimation of Time-Dependent Turning Fractions at Signalized Intersections. Transp. Res. Rec. 1998, 1644, 142–149. [Google Scholar] [CrossRef]
- Yang, X.; Chang, G.-L. Estimation of Time-Varying Origin–Destination Patterns for Design of Multipath Progression on a Signalized Arterial. Transp. Res. Rec. 2017, 2667, 28–38. [Google Scholar] [CrossRef]
- Van Der Zijpp, N.J. Dynamic Origin-Destination Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data. Transp. Res. Rec. 1997, 1607, 87–94. [Google Scholar] [CrossRef]
- Dixon, M.P.; Rilett, L.R. Real-Time OD Estimation Using Automatic Vehicle Identification and Traffic Count Data. Comput. -Aided Civ. Infrastruct. Eng. 2002, 17, 7–21. [Google Scholar] [CrossRef]
- Xuesong, Z.; Mahmassani, H.S. Dynamic origin-destination demand estimation using automatic vehicle identification data. IEEE Trans. Intell. Transp. Syst. 2006, 7, 105–114. [Google Scholar] [CrossRef]
- Cao, Q.; Ren, G.; Li, D.; Ma, J.; Li, H. Semi-supervised route choice modeling with sparse Automatic vehicle identification data. Transp. Res. Part C Emerg. Technol. 2020, 121, 102857. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, L.; Gao, Y.; Qu, B. GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction. Expert Syst. Appl. 2024, 256, 125001. [Google Scholar] [CrossRef]
- Yamamoto, T.; Miwa, T.; Takeshita, T.; Morikawa, T. Updating Dynamic Origin-destination Matrices using Observed Link Travel Speed by Probe Vehicles. In Transportation and Traffic Theory 2009: Golden Jubilee: Papers Selected for Presentation at ISTTT18, a Peer Reviewed Series Since 1959; Lam, W.H.K., Wong, S.C., Lo, H.K., Eds.; Springer: Boston, MA, USA, 2009; pp. 723–738. [Google Scholar]
- Cao, P.; Miwa, T.; Yamamoto, T.; Morikawa, T. Bilevel Generalized Least Squares Estimation of Dynamic Origin–Destination Matrix for Urban Network with Probe Vehicle Data. Transp. Res. Rec. 2013, 2333, 66–73. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Hao, W. Origin-Destination Estimation Using Probe Vehicle Trajectory and Link Counts. J. Adv. Transp. 2017, 2017, 4341532. [Google Scholar] [CrossRef]
- Ros-Roca, X.; Montero, L.; Barceló, J.; Nökel, K.; Gentile, G. A practical approach to assignment-free Dynamic Origin–Destination Matrix Estimation problem. Transp. Res. Part C Emerg. Technol. 2022, 134, 103477. [Google Scholar] [CrossRef]
- Comert, G.; Amdeberhan, T.; Begashaw, N.; Medhin, N.G.; Chowdhury, M. Simple analytical models for estimating the queue lengths from probe vehicles at traffic signals: A combinatorial approach for nonparametric models. Expert Syst. Appl. 2024, 252, 124076. [Google Scholar] [CrossRef]
- Li, A.; Xu, Z.; Zhang, J.; Li, T.; Cheng, X.; Hu, C. A Vector Field Visualization Method for Trajectory Big Data. ISPRS Int. J. Geo-Inf. 2023, 12, 398. [Google Scholar] [CrossRef]
- Verbas, I.Ö.; Mahmassani, H.S.; Zhang, K. Time-Dependent Origin–Destination Demand Estimation: Challenges and Methods for Large-Scale Networks with Multiple Vehicle Classes. Transp. Res. Rec. 2011, 2263, 45–56. [Google Scholar] [CrossRef]
- Sherali, H.D.; Park, T. Estimation of dynamic origin–destination trip tables for a general network. Transp. Res. Part B Methodol. 2001, 35, 217–235. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, H.M.; Recker, W.W. Inferring origin–destination trip matrices with a decoupled GLS path flow estimator. Transp. Res. Part B Methodol. 2005, 39, 497–518. [Google Scholar] [CrossRef]
- Lundgren, J.T.; Peterson, A. A heuristic for the bilevel origin–destination-matrix estimation problem. Transp. Res. Part B Methodol. 2008, 42, 339–354. [Google Scholar] [CrossRef]
- Frederix, R.; Viti, F.; Tampère, C.M.J. Dynamic origin–destination estimation in congested networks: Theoretical findings and implications in practice. Transp. A Transp. Sci. 2013, 9, 494–513. [Google Scholar] [CrossRef]
- Lee, S.; Heydecker, B.; Kim, Y.H.; Shon, E.-Y. Dynamic OD estimation using three phase traffic flow theory. J. Adv. Transp. 2011, 45, 143–158. [Google Scholar] [CrossRef]
- Hazelton, M.L. Statistical inference for time varying origin–destination matrices. Transp. Res. Part B Methodol. 2008, 42, 542–552. [Google Scholar] [CrossRef]
- Xie, C.; Kockelman, K.M.; Waller, S.T. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation. Procedia-Soc. Behav. Sci. 2011, 17, 189–212. [Google Scholar] [CrossRef]
- Lu, Z.; Rao, W.; Wu, Y.-J.; Guo, L.; Xia, J. A Kalman filter approach to dynamic OD flow estimation for urban road networks using multi-sensor data. J. Adv. Transp. 2015, 49, 210–227. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Y.; Zhang, Q.; Yang, X.T. Signalized arterial origin-destination flow estimation using flawed vehicle trajectories: A self-supervised learning approach without ground truth. Transp. Res. Part C Emerg. Technol. 2022, 145, 103917. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Zhang, Q.; Zhou, L.; Su, Y.; Xia, H.; Xu, B. Gated Recurrent Unit Embedded with Dual Spatial Convolution for Long-Term Traffic Flow Prediction. ISPRS Int. J. Geo-Inf. 2023, 12, 366. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wei, Y.; Hu, Y.; Piao, X.; Yin, B. Metro Passenger Flow Prediction via Dynamic Hypergraph Convolution Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7891–7903. [Google Scholar] [CrossRef]
- Joanna, L. The Use of the Dynamic Time Warping (DTW) Method to Describe the COVID-19 Dynamics in Poland. Oeconomia Copernic. 2021, 12, 539–556. [Google Scholar] [CrossRef]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks. In Proceedings of the Semantic Web, Heraklion, Greece, 3–7 June 2018; pp. 593–607. [Google Scholar]
- Ma, W.; Yuan, J.; An, K.; Yu, C. Route flow estimation based on the fusion of probe vehicle trajectory and automated vehicle identification data. Transp. Res. Part C Emerg. Technol. 2022, 144, 103907. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, Z.; Tian, Y.; Chen, H.; Wang, Y. A Deep Generative Adversarial Architecture for Network-Wide Spatial-Temporal Traffic-State Estimation. Transp. Res. Rec. 2018, 2672, 87–105. [Google Scholar] [CrossRef]
- Zhang, K.; He, Z.; Zheng, L.; Zhao, L.; Wu, L. A generative adversarial network for travel times imputation using trajectory data. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 197–212. [Google Scholar] [CrossRef]
- Hai, T.; Ren, G.; Chen, W.; Cao, Q.; Dong, C. A Heuristic Approach for Multi-Path Signal Progression Considering Traffic Flow Uncertainty. Mathematics 2023, 11, 377. [Google Scholar] [CrossRef]
Path | Input Features | Label | Category |
---|---|---|---|
Labeled path sample | |||
- | Unlabeled path sample |
Parameter | Range |
---|---|
Number of GCN hidden layers | 2–4 |
Number of RGCN hidden layers | 2–4 |
Number of fully connected hidden layers | 2–4 |
Number of neurons in each hidden layer | 8–256 |
Model | Parameter Settings |
---|---|
SSM | Expansion ratio is 1/0.25 |
S-GCN | GCN-Hidden_layer_sizes = (128, 128, 64, 64), Fully_connected_layer_sizes = (64, 32, 16) |
M-GCN | RGCN_Hidden_layer_sizes = (128, 128, 64, 64), Fully_connected_layer_sizes = (64, 32, 16) |
MKG-GAN | RGCN_Hidden_layer_sizes = (128, 128, 64, 64), Gererator_Fully_connected_layer_sizes = (64, 32, 16), Discriminator_Fully_connected_layer_sizes = (64, 64, 16) |
Model | MAE | MSE | R2 |
---|---|---|---|
SSM | 4.48 | 47.22 | 0.54 |
S-GCN | 3.00 | 23.26 | 0.77 |
M-GCN | 2.73 | 15.87 | 0.84 |
MKG-GAN | 2.33 | 11.53 | 0.88 |
Model | Metric | Path (Origin–Destination) | |||||||
---|---|---|---|---|---|---|---|---|---|
1-5 | 2-3 | 2-5 | 3-5 | 4-2 | 4-5 | 5-2 | 5-4 | ||
MKG-GAN | MAE | 1.70 | 1.66 | 2.42 | 2.72 | 4.19 | 2.34 | 1.61 | 1.97 |
MSE | 5.06 | 5.33 | 9.39 | 14.46 | 35.66 | 11.13 | 4.53 | 6.70 | |
R2 | 0.50 | 0.72 | 0.69 | 0.81 | 0.89 | 0.70 | 0.49 | 0.72 | |
M-GAN | MAE | 1.49 | 1.90 | 3.07 | 3.86 | 4.10 | 2.91 | 1.62 | 1.83 |
MSE | 4.84 | 7.37 | 16.76 | 27.70 | 30.67 | 16.11 | 5.12 | 6.58 | |
R2 | 0.51 | 0.61 | 0.44 | 0.65 | 0.90 | 0.56 | 0.42 | 0.72 | |
S-GAN | MAE | 4.56 | 2.13 | 3.17 | 4.06 | 6.73 | 3.40 | 1.76 | 2.23 |
MSE | 5.65 | 9.26 | 18.10 | 30.87 | 95.29 | 23.40 | 5.63 | 9.74 | |
R2 | 0.44 | 0.51 | 0.40 | 0.61 | 0.70 | 0.38 | 0.37 | 0.59 | |
SSM | MAE | 4.19 | 3.40 | 4.30 | 5.73 | 8.60 | 4.21 | 3.45 | 3.43 |
MSE | 38.90 | 22.86 | 36.87 | 66.52 | 145.72 | 40.62 | 21.69 | 25.83 | |
R2 | −0.59 | −0.11 | −0.15 | 0.19 | 0.56 | −0.02 | −1.16 | 0.01 |
Indicator | Model | Penetration Rate | |||||
---|---|---|---|---|---|---|---|
5% | 10% | 15% | 20% | 25% | 30% | ||
MAE | SSM | 7.97 | 6.27 | 5.52 | 4.91 | 4.48 | 4.22 |
MKG-GAN | 3.34 | 2.91 | 2.69 | 2.53 | 2.33 | 2.17 | |
MSE | SSM | 150.49 | 89.66 | 67.22 | 54.72 | 47.22 | 41.82 |
MKG-GAN | 24.31 | 17.58 | 14.51 | 12.83 | 11.53 | 9.49 | |
R2 | SSM | −0.44 | 0.13 | 0.35 | 0.47 | 0.54 | 0.59 |
MKG-GAN | 0.76 | 0.83 | 0.85 | 0.87 | 0.88 | 0.91 |
Indicator | Model | Number of Paths with Observations | |||||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | ||
MAE | SSM | 4.48 | 4.48 | 4.48 | 4.48 | 4.48 | 4.48 |
MKG-GAN | 2.80 | 2.57 | 2.33 | 2.33 | 2.16 | 2.07 | |
MSE | SSM | 47.22 | 47.22 | 47.22 | 47.22 | 47.22 | 47.22 |
MKG-GAN | 20.94 | 13.78 | 13.03 | 11.53 | 10.37 | 8.69 | |
R2 | SSM | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
MKG-GAN | 0.78 | 0.82 | 0.85 | 0.88 | 0.90 | 0.92 |
Model | MAE | MSE | R2 |
---|---|---|---|
SSM | 5.11 ± 0.68 | 67.24 ± 9.36 | 0.51 ± 0.10 |
S-GCN | 3.57 ± 0.17 | 31.41 ± 4.51 | 0.78 ± 0.05 |
M-GCN | 3.05 ± 0.14 | 16.37 ± 2.42 | 0.87 ± 0.02 |
MKG-GAN | 2.64 ± 0.11 | 12.59 ± 1.21 | 0.93 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cao, Q.; Lin, W.; Song, J.; Chen, W.; Ren, G. Estimation of Arterial Path Flow Considering Flow Distribution Consistency: A Data-Driven Semi-Supervised Method. Systems 2024, 12, 507. https://doi.org/10.3390/systems12110507
Zhang Z, Cao Q, Lin W, Song J, Chen W, Ren G. Estimation of Arterial Path Flow Considering Flow Distribution Consistency: A Data-Driven Semi-Supervised Method. Systems. 2024; 12(11):507. https://doi.org/10.3390/systems12110507
Chicago/Turabian StyleZhang, Zhe, Qi Cao, Wenxie Lin, Jianhua Song, Weihan Chen, and Gang Ren. 2024. "Estimation of Arterial Path Flow Considering Flow Distribution Consistency: A Data-Driven Semi-Supervised Method" Systems 12, no. 11: 507. https://doi.org/10.3390/systems12110507
APA StyleZhang, Z., Cao, Q., Lin, W., Song, J., Chen, W., & Ren, G. (2024). Estimation of Arterial Path Flow Considering Flow Distribution Consistency: A Data-Driven Semi-Supervised Method. Systems, 12(11), 507. https://doi.org/10.3390/systems12110507