One-Bit In, Two-Bit Out: Network-Based Metrics of Papers Can Be Largely Improved by Including Only the External Citation Counts without the Citation Relations
<p>(<b>A</b>) The distribution of the <math display="inline"><semantics> <msub> <mi>C</mi> <mi>APS</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>C</mi> <mi>WoS</mi> </msub> </semantics></math> of papers. (<b>B</b>) The cumulative distribution of the (<math display="inline"><semantics> <msub> <mi>C</mi> <mi>WoS</mi> </msub> </semantics></math> − <math display="inline"><semantics> <msub> <mi>C</mi> <mi>APS</mi> </msub> </semantics></math>) of papers.</p> "> Figure 2
<p>The correlation between the PageRank algorithm on the complete citation network and exPRank algorithm on the incomplete citation network, as well as the PageRank algorithm on the complete citation network. “PageRank*” represents the results of PageRank algorithm applied to the complete citation network. “citation counts*” represents the results of citation counts of papers in the complete citation network. Each point in the figure is averaged over 20 realizations of the networks by randomly deleting links in the complete citation network.</p> "> Figure 3
<p>The scatter plots of ranking results for exPRank versus other ranking algorithms. (<b>A</b>) Comparison of the ranking of all papers under exPRank and PageRank. (<b>B</b>) Comparison of the ranking of all papers under exPRank and PrestigeRank. (<b>C</b>) Comparison of the ranking of all papers under exPRank and <math display="inline"><semantics> <msub> <mi>C</mi> <mi>APS</mi> </msub> </semantics></math>. (<b>D</b>) Comparison of the ranking of all papers under exPRank and <math display="inline"><semantics> <msub> <mi>C</mi> <mi>WoS</mi> </msub> </semantics></math>. Nobel prize-winning physics papers and PRL milestone papers are typical high-quality papers, and their rankings under different algorithms are represented by red and purple dots.</p> "> Figure 4
<p>The mean rank of (<b>A</b>) 70 Nobel prize-winning papers in Physics, (<b>B</b>) 87 Physical Review Letters milestone papers, (<b>C</b>) 23 Physical Review A milestone papers, (<b>D</b>) 47 Physical Review B milestone papers, (<b>E</b>) 23 Physical Review E milestone papers, and (<b>F</b>) 74 selected papers for celebrating 125 years of the Physical Review journals in different ranking algorithms. “exPR” represents the external citation enhanced PageRank, “PR” represents PageRank, and “PrR” represents Prestigerank.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data in the Study
2.2. External Citation Enhanced PageRank
2.3. Other Compared Metrics
3. Results
3.1. The Analysis of the Incompleteness of the APS Dataset
3.2. The Effect of an Incomplete Citation Network on Evaluation Algorithms
3.3. Correlation between Evaluation Algorithms
3.4. Identifying High-Quality Papers
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | These data can be obtained by submitting a request via https://journals.aps.org/datasets (accessed on 21 November 2021). |
2 |
|
References
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Qi, G.; Muhammad, K.; Ali, B.; Abro, W.A. Paper recommendation based on heterogeneous network embedding. Knowl.-Based Syst. 2020, 210, 106438. [Google Scholar] [CrossRef]
- Ke, Q.; Gates, A.J.; Barabási, A.L. A network-based normalized impact measure reveals successful periods of scientific discovery across disciplines. Proc. Natl. Acad. Sci. USA 2023, 120, e2309378120. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Jeong, H.; Néda, Z.; Barabási, A.L. Measuring preferential attachment in evolving networks. Europhys. Lett. 2003, 61, 567–572. [Google Scholar] [CrossRef]
- Medo, M.; Cimini, G.; Gualdi, S. Temporal effects in the growth of networks. Phys. Rev. Lett. 2011, 107, 238701. [Google Scholar] [CrossRef]
- Bianconi, G.; Barabási, A.L. Competition and multiscaling in evolving networks. Europhys. Lett. 2001, 54, 436–442. [Google Scholar] [CrossRef]
- Caldarelli, G.; Capocci, A.; De Los Rios, P.; Munoz, M.A. Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 2002, 89, 258702. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Barabási, A.L. Quantifying long-term scientific impact. Science 2013, 342, 127–132. [Google Scholar] [CrossRef]
- Zeng, A.; Shen, Z.; Zhou, J.; Wu, J.; Fan, Y.; Wang, Y.; Stanley, H.E. The science of science: From the perspective of complex systems. Phys. Rep. 2017, 714, 1–73. [Google Scholar] [CrossRef]
- Bai, X.; Pan, H.; Hou, J.; Guo, T.; Lee, I.; Xia, F. Quantifying success in science: An overview. IEEE Access 2020, 8, 123200–123214. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S. Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network. Scientometrics 2021, 126, 7197–7222. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Tekles, A.; Bornmann, L. A proposal to revise the disruption indicator. Prof. Inf. 2021, 30, e300121. [Google Scholar]
- Leydesdorff, L.; Bornmann, L. Disruption indices and their calculation using web-of-science data: Indicators of historical developments or evolutionary dynamics? J. Inf. 2021, 15, 101219. [Google Scholar]
- Yang, A.J.; Gong, H.; Wang, Y.; Zhang, C.; Deng, S. Rescaling the disruption index reveals the universality of disruption distributions in science. Scientometrics 2024, 129, 561–580. [Google Scholar] [CrossRef]
- Lin, J.; Yu, Y.; Song, J.; Shi, X. Detecting and analyzing missing citations to published scientific entities. Scientometrics 2022, 127, 2395–2412. [Google Scholar] [CrossRef]
- Delgado-Quirós, L.; Aguillo, I.F.; Martín-Martín, A.; López-Cózar, E.D.; Orduña-Malea, E.; Ortega, J.L. Why are these publications missing? Uncovering the reasons behind the exclusion of documents in free-access scholarly databases. J. Assoc. Inf. Sci. Technol. 2024, 75, 43–58. [Google Scholar] [CrossRef]
- Walker, D.; Xie, H.; Yan, K.K.; Maslov, S. Ranking scientific publications using a model of network traffic. J. Stat. Mech. Theory Exp. 2007, 2007, P06010. [Google Scholar] [CrossRef]
- Yao, L.; Wei, T.; Zeng, A.; Fan, Y.; Di, Z. Ranking scientific publications: The effect of nonlinearity. Sci. Rep. 2014, 4, 6663. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, A.; Fan, Y.; Di, Z. Ranking scientific publications with similarity-preferential mechanism. Scientometrics 2016, 106, 805–816. [Google Scholar] [CrossRef]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Su, C.; Pan, Y.; Zhen, Y.; Ma, Z.; Yuan, J.; Guo, H.; Yu, Z.; Ma, C.; Wu, Y. PrestigeRank: A new evaluation method for papers and journals. J. Inf. 2011, 5, 1–13. [Google Scholar] [CrossRef]
- Mariani, M.S.; Medo, M.; Zhang, Y.C. Identification of milestone papers through time-balanced network centrality. J. Inf. 2016, 10, 1207–1223. [Google Scholar] [CrossRef]
- Shen, H.W.; Barabási, A.L. Collective credit allocation in science. Proc. Natl. Acad. Sci. USA 2014, 111, 12325–12330. [Google Scholar] [CrossRef]
Algorithms | exPRank | PageRank | PrestigeRank | ||
---|---|---|---|---|---|
exPRank | 1 | 0.7223 () | 0.7717 () | 0.7766 () | 0.9750 () |
PageRank | 0.7223 () | 1 | 0.9366 () | 0.8905 () | 0.6448 () |
PrestigeRank | 0.7717 () | 0.9366 () | 1 | 0.9844 () | 0.7178 () |
0.7766 () | 0.8905 () | 0.9844 () | 1 | 0.7541 () | |
0.9750 () | 0.6448 () | 0.7178 () | 0.7541 () | 1 |
Algorithms | exPRank | PageRank | PrestigeRank | ||
---|---|---|---|---|---|
exPRank | 1 | 0.2905 | 0.5104 | 0.4827 | 0.6376 |
PageRank | 0.2905 | 1 | 0.3593 | 0.2366 | 0.1912 |
PrestigeRank | 0.5104 | 0.3593 | 1 | 0.6370 | 0.3587 |
0.4827 | 0.2366 | 0.6370 | 1 | 0.4501 | |
0.6376 | 0.1912 | 0.3587 | 0.4501 | 1 |
Paper | Rank | Citation Counts | |||||
---|---|---|---|---|---|---|---|
exPRank | PageRank | Prestigerank | APS | WoS | |||
PhysRevLett.77.3865 | 1 | 273 | 5 | 3 | 1 | 3690 | 91,229 |
PhysRevB.37.785 | 2 | 3073 | 365 | 107 | 2 | 656 | 72,092 |
PhysRev.140.A1133 | 3 | 8 | 1 | 1 | 4 | 5560 | 39,460 |
PhysRevB.54.11169 | 4 | 567 | 13 | 6 | 3 | 2818 | 48,754 |
PhysRev.136.B864 | 5 | 13 | 2 | 2 | 9 | 4399 | 32,749 |
PhysRevA.38.3098 | 6 | 2106 | 193 | 87 | 5 | 728 | 38,670 |
PhysRevB.13.5188 | 7 | 257 | 7 | 5 | 8 | 2843 | 35,842 |
PhysRevB.50.17953 | 8 | 1391 | 38 | 10 | 6 | 1801 | 36,268 |
PhysRevB.59.1758 | 9 | 1517 | 43 | 11 | 7 | 1784 | 35,893 |
PhysRevB.23.5048 | 10 | 83 | 3 | 4 | 14 | 3325 | 15,436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Shen, Z.; Wu, J. One-Bit In, Two-Bit Out: Network-Based Metrics of Papers Can Be Largely Improved by Including Only the External Citation Counts without the Citation Relations. Systems 2024, 12, 377. https://doi.org/10.3390/systems12090377
Zhou J, Shen Z, Wu J. One-Bit In, Two-Bit Out: Network-Based Metrics of Papers Can Be Largely Improved by Including Only the External Citation Counts without the Citation Relations. Systems. 2024; 12(9):377. https://doi.org/10.3390/systems12090377
Chicago/Turabian StyleZhou, Jianlin, Zhesi Shen, and Jinshan Wu. 2024. "One-Bit In, Two-Bit Out: Network-Based Metrics of Papers Can Be Largely Improved by Including Only the External Citation Counts without the Citation Relations" Systems 12, no. 9: 377. https://doi.org/10.3390/systems12090377