Quantifying the Complexity of Nodes in Higher-Order Networks Using the Infomap Algorithm
<p>The comparison of first- and higher-order network models.</p> "> Figure 2
<p>The node complexity-quantification process.</p> "> Figure 3
<p>The number of ordinary employees, middle-level managers, and senior leaders occupied in the top 50 nodes ranked by three complexity metrics in Enron networks. (<b>a</b>–<b>c</b>) The results ranked by <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>3</mn> </msub> </mrow> </semantics></math> in first-order networks, respectively. (<b>d</b>–<b>f</b>) Those in higher-order networks, respectively.</p> "> Figure 4
<p>The sum of complexity grades in the top 50 nodes ranked by three complexity metrics in first- and higher-order Enron networks. (<b>a</b>–<b>c</b>) The results ranked by <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>3</mn> </msub> </mrow> </semantics></math> in Enron networks, respectively.</p> "> Figure 5
<p>The province communities detected using the Infomap algorithm in railway networks. The different colors of the nodes represent their belonging to different communities. (<b>a</b>) The results in first-order networks, where the size of nodes is directly proportional to <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>3</mn> </msub> </mrow> </semantics></math>. (<b>b</b>–<b>d</b>) The results in higher-order networks, where the size of nodes is in direct proportion to <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>3</mn> </msub> </mrow> </semantics></math>, respectively. In addition, <span class="html-italic">E</span> is the east longitude, and <span class="html-italic">N</span> denotes the northern latitude. These parameters are the same with <a href="#systems-12-00347-f006" class="html-fig">Figure 6</a>. It is important to note that the two figures are both created by ‘Origin 2023’.</p> "> Figure 6
<p>The station communities detected using the Infomap algorithm in railway networks.</p> "> Figure 7
<p>The complexity calculated by <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>C</mi> <mo stretchy="false">˜</mo> </mover> <mn>3</mn> </msub> </mrow> </semantics></math> in citation networks, respectively. (<b>a</b>) The number of papers per journal. (<b>b</b>–<b>d</b>) The complexity comparison of first- and higher-order networks.</p> "> Figure 8
<p>The citation flow among five specialized journals via three multidisciplinary journals.</p> ">
Abstract
:1. Introduction
2. Node Complexity Metrics Definition
2.1. Node Complexity Metrics Definition in First-Order Networks
2.2. Rationality Analysis of Node Complexity Metrics in FON
- The more communities a node belongs to, the higher its complexity. represents the number of communities to which node x belongs. In FON, since implies , is constant when using the Infomap algorithm.
- The larger the size of the communities to which a node belongs, the higher its complexity. Based on , is positively correlated with the size of the communities to which node x belongs. To make the data distribution more uniform and reduce the impact of outliers, we introduce the logarithmic function to measure node complexity. Specifically, when , meaning the community contains only one node, . When , then .
- The greater the proportion of a node within its community, the lower its complexity. Building on and , also considers the proportion of node x within its community, which is negatively correlated with complexity. When , meaning , then . When , meaning , then . When , set the denominator to 1. This ensures that Equation (4) remains valid without affecting the experimental results.
2.3. Higher-Order Network Model
2.4. Node Complexity Metrics Definition in Higher-Order Networks
2.5. Rationality Analysis of Node Complexity Metrics in HON
- The more communities a physical node belongs to, the higher its complexity.
- The larger the communities a physical node belongs to, the higher its complexity. is positively correlated with both the number and size of the communities to which node x belongs.
- The greater the proportion of a physical node within a community, the lower its complexity. also considers positive correlations with the number and size of the communities to which node x belongs, as well as a negative correlation with the proportion of node x within its communities.
2.6. A Sample of Node Complexity Quantification Process
3. Results and Analysis
3.1. Data Descriptions
- Railway: This flow dataset covers 4458 high-speed train numbers going through 672 stations of 34 provinces in China in 2016, collected from http://www.12306.cn/ (accessed on 20 January 2024).
- Citation [22]: This flow dataset contains 8,850,334 citations in 668,383 papers in 19 journals of the American Physical Society (APS) by the end of 2020. Among them, the maximum length of the citation flow does not exceed 2.
3.2. Results in Enron Flow Dataset
3.3. Results in Railway Flow Dataset
3.4. Results in Citation Flow Dataset
4. Discussions
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roblek, V.; Dimovski, V. Essentials of ‘the Great Reset’ through Complexity Matching. Systems 2024, 12, 182. [Google Scholar] [CrossRef]
- Bila, J. Emergent Phenomena in Complex Systems. In Proceedings of the Recent Advances in Soft Computing, Brno, Czech Republic, 20–22 June 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 262–270. [Google Scholar]
- Vargas, D.L. Quantum complexity: Quantum mutual information, complex networks, and emergent phenomena in quantum cellular automata. In Theory of Computing Systems Mathematical Systems Theory; Colorado School of Mines: Golden, CO, USA, 2016; p. 7. [Google Scholar]
- McShea, D.W. Metazoan complexity and evolution: Is there a trend? Evolution 1995, 50, 477–492. [Google Scholar]
- Adami, C.; Cerf, N.J. Physical complexity of symbolic sequences. Physica D 2000, 137, 62–69. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, J.; Li, X.; Han, X.; Tan, W.; Huangpeng, Q.; Duan, X. Research on Group Behavior Modeling and Individual Interaction Modes with Informed Leaders. Mathematics 2024, 12, 1160. [Google Scholar] [CrossRef]
- Ahn, Y.Y.; Bagrow, J.P.; Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 2009, 466, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-order organization of complex networks. Science 2016, 353, 163–166. [Google Scholar] [CrossRef]
- Scholtes, I. When is a network a network? multi-order graphical model selection in pathways and temporal networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1037–1046. [Google Scholar]
- Battiston, F.; Cencetti, G.; Lacopini, L.; Latora, V.; Lucas, M.; Patania, A.; Young, J.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar] [CrossRef]
- Shi, D.; Chen, G. Simplicial networks: A powerful tool for characterizing higher-order interactions. Natl. Sci. Rev. 2022, 9, nwac038. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, X. Measuring the Significance of Higher-Order Dependency in Networks. New J. Phys. 2024, 26, 033032. [Google Scholar] [CrossRef]
- Gong, C.; Li, J.; Qian, L.; Li, S.; Yang, Z.; Yang, K. HMSL: Source localization based on higher-order Markov propagation. Chaos Solitons Fractals 2024, 182, 114765. [Google Scholar] [CrossRef]
- Qian, L.; Dou, Y.; Gong, C.; Xu, X.; Tan, Y. Research on User Behavior Based on Higher-Order Dependency Network. Entropy 2023, 25, 1120. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, M.; Esquivel, A.V.; Lancichinetti, A.; West, J.D.; Lambiotte, R. Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 2014, 5, 4630. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wickramarathne, T.L.; Chawla, N.V. Representing higher order dependencies in networks. Sci. Adv. 2016, 2, e1600028. [Google Scholar] [CrossRef]
- Saebi, M.; Xu, J.; Kaplan, L.M.; Ribeiro, B.; Chawla, N.V. Efficient modeling of higher-order dependencies in networks: From algorithm to application for anomaly detection. EPJ Data Sci. 2020, 9, 15. [Google Scholar] [CrossRef]
- Fu, Y.; Li, X.; Li, J.; Yu, M.; Lu, X.; Huangpeng, Q.; Duan, X. Multi-Scale Higher-Order Dependencies (MSHOD): Higher-Order Interactions Mining and Key Nodes Identification for Global Liner Shipping Network. J. Mar. Sci. Eng. 2024, 12, 1305. [Google Scholar] [CrossRef]
- Santos, G.G.; Lakhotia, K.; Rose, C.A.F.D. Towards a Scalable Parallel Infomap Algorithm for Community Detection. In Proceedings of the 2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Dublin, Ireland, 20–22 March 2024; pp. 116–123. [Google Scholar]
- Velden, T.; Yan, S.; Lagoze, C. Mapping the cognitive structure of astrophysics by infomap clustering of the citation network and topic affinity analysis. Scientometrics 2017, 111, 1033–1051. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Huangpeng, Q.; Zhao, C.; Duan, X. Event detection in temporal social networks using a higher-order network model. Chaos 2021, 31, 113144. [Google Scholar] [CrossRef]
- Li, X.; Zhao, C.; Hu, Z.; Yu, C.; Duan, X. Revealing the character of journals in higher-order citation networks. Scientometrics 2022, 127, 6315–6338. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Li, X.; Huang, T. Study of the Impact of a High-Speed Railway Opening on China’s Accessibility Pattern and Spatial Equality. Sustainability 2018, 10, 2943. [Google Scholar] [CrossRef]
- Zhu, T.; Xu, Y.; Zhang, J.; Zhao, B. A Bilevel Programming Model for Designing a Collaborative Network for Regional Railway Transportation and Logistics: The Case of the Beijing-Tianjin-Hebei Region in China. J. Adv. Transp. 2024, 2024, 8905446. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, T.; Sheng, K.; Chen, Y.; Yuan, Z. Key technologies and applications of intelligent dispatching command for high-speed railway in China. Railw. Sci. 2023, 2, 336–346. [Google Scholar] [CrossRef]
- Hu, W.; Dong, J.; Ren, R.; Chen, Z. Underground logistics systems: Development overview and new prospects in China. Front. Eng. Manag. 2023, 10, 354–359. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X. Research on the relationships between discourse leading indicators and citations: Perspectives from altmetrics indicators of international multidisciplinary academic journals. Libr. Tech 2022, 42, 1165–1190. [Google Scholar] [CrossRef]
- Solomon, G.E.A.; Carley, S.F.; Porter, A.L. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature? PLoS ONE 2016, 11, e0152637. [Google Scholar] [CrossRef] [PubMed]
- Njegovanović, A. Complex Systems in Interdisciplinary Interaction. Financ. Mark. Institutions Risks 2024, 8, 94–107. [Google Scholar] [CrossRef]
- Huang, X.; Chen, D.; Ren, T.; Wang, D. A survey of community detection methods in multilayer networks. Data Min. Knowl. Discov. 2020, 35, 1–45. [Google Scholar] [CrossRef]
- Lü, L.; Chen, D.; Ren, X.; Zhang, Q.; Zhang, Y.; Zhou, T. Vital nodes identification in complex networks. Phys. Rep. 2016, 650, 1–63. [Google Scholar] [CrossRef]
- Liang, J.; Ding, R.; Ma, X.; Peng, L.; Wang, K.; Xiao, W. The Carbon Emission Reduction Effect and Spatio-Temporal Heterogeneity of the Science and Technology Finance Network: The Combined Perspective of Complex Network Analysis and Econometric Models. Systems 2024, 12, 110. [Google Scholar] [CrossRef]
- Antoine, J.P.; Trapani, C. Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues. Mathematics 2022, 11, 195. [Google Scholar] [CrossRef]
- Lambiotte, R.; Rosvall, M.; Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 2019, 15, 313–320. [Google Scholar] [CrossRef]
- Fu, Y.; Duan, X.; Li, X.; Han, X.; Deng, J.; Huangpeng, Q. Flocking Modeling and Robustness Evaluation Based on Heterogeneous Network. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; pp. 1870–1875. [Google Scholar]
- Gu, K.; Yan, L.; Li, X.; Duan, X.; Liang, J. Change point detection in multi-agent systems based on higher-order features. Chaos 2022, 32, 111102. [Google Scholar] [CrossRef] [PubMed]
Enron—FON | Enron—HON | ||||||
---|---|---|---|---|---|---|---|
ID | Name | Position | ID | Name | Position | ||
1 | kuykendall-t | Trader | 1 | 47 | lavorato-j | CEO | 9 |
2 | kitchen-l | President | 1 | 2 | kitchen-l | President | 6 |
3 | geaccone-t | - | 1 | 82 | grigsby-m | Manager | 6 |
4 | cash-m | - | 1 | 21 | sager-e | - | 5 |
5 | merriss-s | - | 1 | 33 | shively-h | Vice President | 5 |
6 | linder-e | - | 1 | 48 | perlingiere-d | - | 5 |
7 | griffith-j | - | 1 | 96 | kaminski-v | Manager | 5 |
8 | mccarty-d | Vice President | 1 | 136 | neal-s | Vice President | 5 |
9 | rapp-b | - | 1 | 4 | cash-m | - | 4 |
10 | lay-k | CEO | 1 | 13 | mann-k | - | 4 |
11 | keavey-p | - | 1 | 14 | tycholiz-b | Vice President | 4 |
12 | love-p | - | 1 | 19 | scott-s | - | 4 |
13 | mann-k | - | 1 | 28 | buy-r | Manager | 4 |
14 | tycholiz-b | Vice President | 1 | 58 | kuykendall-t | - | 4 |
15 | pereira-s | - | 1 | 65 | haedicke-m | Managing Director | 4 |
16 | meyers-a | - | 1 | 67 | kean-s | Vice President | 4 |
17 | hendrickson-s | - | 1 | 86 | hyvl-d | - | 4 |
18 | solberg-g | - | 1 | 128 | keiser-k | - | 4 |
19 | scott-s | - | 1 | 23 | hodge-j | Managing Director | 3 |
20 | schoolcraft-d | - | 1 | 41 | martin-t | Vice President | 3 |
Enron—FON | Enron—HON | ||||||
---|---|---|---|---|---|---|---|
ID | Name | Position | ID | Name | Position | ||
3 | geaccone-t | - | 1.204 | 47 | lavorato-j | CEO | 11.222 |
8 | mccarty-d | Vice President | 1.204 | 82 | grigsby-m | Manager | 7.824 |
9 | rapp-b | - | 1.204 | 2 | kitchen-l | President | 7.665 |
20 | schoolcraft-d | - | 1.204 | 21 | sager-e | - | 6.474 |
42 | corman-s | Vice President | 1.204 | 33 | shively-h | Vice President | 6.410 |
53 | blair-l | - | 1.204 | 96 | kaminski-v | Manager | 6.402 |
72 | watson-k | - | 1.204 | 136 | neal-s | Vice President | 6.061 |
77 | harris-s | - | 1.204 | 14 | tycholiz-b | Vice President | 5.678 |
83 | mcconnell-m | - | 1.204 | 13 | mann-k | - | 5.474 |
90 | lokay-m | Administrative Asisstant | 1.204 | 58 | taylor-m | - | 5.432 |
95 | donoho-l | - | 1.204 | 67 | kean-s | Vice President | 5.424 |
111 | hyatt-k | Director | 1.204 | 48 | perlingiere-d | - | 5.403 |
119 | horton-s | President | 1.204 | 4 | cash-m | - | 5.131 |
120 | lokey-t | Manager | 1.204 | 128 | keiser-k | - | 5.073 |
124 | ybarbo-p | - | 1.204 | 65 | haedicke-m | Managing Director | 5.044 |
134 | hayslett-r | Vice President | 1.204 | 86 | hyvl-d | - | 4.900 |
5 | merriss-s | - | 1.079 | 28 | buy-r | Manager | 4.868 |
6 | linder-e | - | 1.079 | 41 | martin-t | Vice President | 4.591 |
16 | meyers-a | - | 1.079 | 117 | mclaughlin-e | - | 4.591 |
18 | solberg-g | - | 1.079 | 129 | steffes-j | Vice President | 4.470 |
Enron—FON | Enron—HON | ||||||
---|---|---|---|---|---|---|---|
ID | Name | Position | ID | Name | Position | ||
3 | geaccone-t | - | 1.204 | 47 | lavorato-j | CEO | 27.073 |
8 | mccarty-d | Vice President | 1.204 | 2 | kitchen-l | President | 23.218 |
9 | rapp-b | - | 1.204 | 82 | grigsby-m | Manager | 18.596 |
20 | schoolcraft-d | - | 1.204 | 58 | taylor-m | - | 16.654 |
42 | corman-s | Vice President | 1.204 | 72 | watson-k | - | 15.950 |
53 | blair-l | - | 1.204 | 46 | dasovich-j | Executive | 15.608 |
72 | watson-k | - | 1.204 | 77 | harris-s | - | 15.163 |
77 | harris-s | - | 1.204 | 14 | tycholiz-b | Vice President | 14.205 |
83 | mcconnell-m | - | 1.204 | 86 | hyvl-d | - | 14.113 |
90 | lokay-m | Administrative Asisstant | 1.204 | 67 | kean-s | Vice President | 14.080 |
95 | donoho-l | - | 1.204 | 43 | nemec-g | - | 13.825 |
111 | hyatt-k | Director | 1.204 | 21 | sager-e | - | 13.812 |
119 | horton-s | President | 1.204 | 35 | jones-t | - | 13.679 |
120 | lokey-t | Manager | 1.204 | 129 | steffes-j | Vice President | 13.523 |
124 | ybarbo-p | - | 1.204 | 39 | fossum-d | Vice President | 13.269 |
134 | hayslett-r | Vice President | 1.204 | 128 | keiser-k | - | 12.567 |
5 | merriss-s | - | 1.079 | 107 | shackleton-s | - | 12.425 |
6 | linder-e | - | 1.079 | 42 | corman-s | Vice President | 12.234 |
16 | meyers-a | - | 1.079 | 48 | perlingiere-d | - | 12.221 |
18 | solberg-g | - | 1.079 | 136 | neal-s | Vice President | 12.130 |
ID | Name | C | ID | Name | C | ID | Name | C | ID | Name | C |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | kuykendall-t | 2 | 38 | gay-r | 1 | 75 | quenet-j | 2 | 112 | causholli-m | 2 |
2 | kitchen-l | 3 | 39 | fossum-d | 3 | 76 | fischer-m | 1 | 113 | heard-m | 1 |
3 | geaccone-t | 1 | 40 | gilbertsmith-d | 1 | 77 | harris-s | 1 | 114 | forney-j | 2 |
4 | cash-m | 1 | 41 | martin-t | 3 | 78 | ruscitti-k | 2 | 115 | dorland-c | 1 |
5 | merriss-s | 1 | 42 | corman-s | 3 | 79 | mims-thurston-p | 1 | 116 | symes-k | 1 |
6 | linder-e | 1 | 43 | nemec-g | 1 | 80 | skilling-j | 3 | 117 | mclaughlin-e | 1 |
7 | griffith-j | 1 | 44 | sanchez-m | 1 | 81 | ring-a | 1 | 118 | arnold-j | 3 |
8 | mccarty-d | 3 | 45 | guzman-m | 2 | 82 | grigsby-m | 2 | 119 | horton-s | 3 |
9 | rapp-b | 1 | 46 | dasovich-j | 2 | 83 | mcconnell-m | 1 | 120 | lokey-t | 2 |
10 | lay-k | 3 | 47 | lavorato-j | 3 | 84 | scholtes-d | 2 | 121 | ermis-f | 2 |
11 | keavey-p | 1 | 48 | perlingiere-d | 1 | 85 | schwieger-j | 2 | 122 | zipper-a | 3 |
12 | love-p | 1 | 49 | giron-d | 1 | 86 | hyvl-d | 1 | 123 | salisbury-h | 2 |
13 | mann-k | 1 | 50 | may-l | 2 | 87 | donohoe-t | 1 | 124 | ybarbo-p | 1 |
14 | tycholiz-b | 3 | 51 | thomas-p | 1 | 88 | stepenovitch-j | 3 | 125 | bailey-s | 1 |
15 | pereira-s | 1 | 52 | maggi-m | 2 | 89 | holst-k | 2 | 126 | derrick-j | 2 |
16 | meyers-a | 1 | 53 | blair-l | 1 | 90 | lokay-m | 2 | 127 | germany-c | 1 |
17 | hendrickson-s | 1 | 54 | whalley-l | 1 | 91 | allen-p | 1 | 128 | keiser-k | 1 |
18 | solberg-g | 1 | 55 | weldon-c | 1 | 92 | ring-r | 1 | 129 | steffes-j | 3 |
19 | scott-s | 1 | 56 | rogers-b | 1 | 93 | arora-h | 3 | 130 | richey-c | 2 |
20 | schoolcraft-d | 1 | 57 | badeer-r | 2 | 94 | shapiro-r | 3 | 131 | whalley-g | 3 |
21 | sager-e | 1 | 58 | taylor-m | 1 | 95 | donoho-l | 1 | 132 | saibi-e | 1 |
22 | dean-c | 2 | 59 | wolfe-j | 1 | 96 | kaminski-v | 2 | 133 | stclair-c | 1 |
23 | hodge-j | 3 | 60 | shankman-j | 3 | 97 | motley-m | 2 | 134 | hayslett-r | 3 |
24 | pimenov-v | 1 | 61 | dickson-s | 1 | 98 | carson-m | 1 | 135 | lewis-a | 2 |
25 | baughman-d | 2 | 62 | davis-d | 1 | 99 | hain-m | 2 | 136 | neal-s | 3 |
26 | quigley-d | 1 | 63 | south-s | 1 | 100 | parks-j | 1 | 137 | swerzbin-m | 2 |
27 | brawner-s | 2 | 64 | benson-r | 2 | 101 | presto-k | 3 | 138 | hernandez-j | 1 |
28 | buy-r | 2 | 65 | haedicke-m | 3 | 102 | williams-j | 1 | 139 | panus-s | 1 |
29 | king-j | 2 | 66 | storey-g | 2 | 103 | beck-s | 3 | 140 | reitmeyer-j | 1 |
30 | white-s | 1 | 67 | kean-s | 3 | 104 | farmer-d | 2 | 141 | gang-l | 1 |
31 | lucci-p | 1 | 68 | sturm-f | 3 | 105 | sanders-r | 3 | 142 | platter-p | 2 |
32 | mckay-b | 1 | 69 | tholt-j | 3 | 106 | smith-m | 1 | 143 | mckay-j | 2 |
33 | shively-h | 3 | 70 | lenhart-m | 1 | 107 | shackleton-s | 1 | 144 | townsend-j | 1 |
34 | cuilla-m | 2 | 71 | whitt-m | 1 | 108 | williams-w3 | 1 | 145 | semperger-c | 2 |
35 | jones-t | 1 | 72 | watson-k | 1 | 109 | slinger-r | 2 | 146 | delainey-d | 3 |
36 | bass-e | 2 | 73 | campbell-l | 1 | 110 | zufferli-j | 1 | |||
37 | staab-t | 1 | 74 | ward-k | 1 | 111 | hyatt-k | 2 |
Railway—FON | Railway—HON | ||||||
---|---|---|---|---|---|---|---|
Province | Edge Province | Province | |||||
Hubei | 0.845 | √ | Anhui | 4 | 3.342 | 18.1 | 4 |
Sichuan | 0.845 | √ | Hubei | 3 | 2.643 | 12.848 | 3 |
Hunan | 0.845 | √ | Henan | 2 | 2.041 | 17.415 | 2 |
Tianjin | 0.845 | √ | Jiangxi | 2 | 1.699 | 13.255 | 2 |
Beijing | 0.845 | √ | Zhejiang | 2 | 1.699 | 11.791 | 2 |
Henan | 0.845 | √ | Jiangshu | 2 | 1.74 | 21.974 | 2 |
Shaanxi | 0.845 | √ | Liaoning | 2 | 1.519 | 5.901 | 2 |
Guangdong | 0.845 | × | Hebei | 1 | 1.041 | 16.222 | 1 |
Guangxi | 0.845 | × | Shandong | 1 | 1.041 | 14.414 | 1 |
Chongqing | 0.845 | × | Tianjin | 1 | 1.041 | 12.075 | 1 |
Journal | Category 1 | Category 2 | Category 3 |
---|---|---|---|
PRL | Physics, Multidisciplinary | - | - |
PRX | Physics, Multidisciplinary | - | - |
RMP | Physics, Multidisciplinary | - | - |
PRA | Optics | Physics, Atomic, Molecular, and Chemical | - |
PRB | Materials Science, Multidisciplinary | Physics, Condensed Matter | Physics, Applied |
PRC | Physics, Nuclear | - | - |
PRD | Physics, Particles, and Fields | Astronomy, and Astrophysics | - |
PRE | Physics, Fluids, and Plasmas | Physics, Mathematical | - |
PRAB | Physics, Nuclear | Physics, Particles, and Fields | - |
PRAP | Physics, Applied | - | - |
PRF | Physics, Fluids, and Plasmas | - | - |
PRM | Materials Science, Multidisciplinary | - | - |
PRPER | Education, and Educational Research | Education, Scientific Disciplines | - |
PRXQ | Quantum Science, and Technology | Physics, Multidisciplinary | Physics, Applied |
PRR | Physics, Multidisciplinary | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Lu, X.; Yu, C.; Li, J.; Li, X.; Huangpeng, Q. Quantifying the Complexity of Nodes in Higher-Order Networks Using the Infomap Algorithm. Systems 2024, 12, 347. https://doi.org/10.3390/systems12090347
Fu Y, Lu X, Yu C, Li J, Li X, Huangpeng Q. Quantifying the Complexity of Nodes in Higher-Order Networks Using the Infomap Algorithm. Systems. 2024; 12(9):347. https://doi.org/10.3390/systems12090347
Chicago/Turabian StyleFu, Yude, Xiongyi Lu, Caixia Yu, Jichao Li, Xiang Li, and Qizi Huangpeng. 2024. "Quantifying the Complexity of Nodes in Higher-Order Networks Using the Infomap Algorithm" Systems 12, no. 9: 347. https://doi.org/10.3390/systems12090347
APA StyleFu, Y., Lu, X., Yu, C., Li, J., Li, X., & Huangpeng, Q. (2024). Quantifying the Complexity of Nodes in Higher-Order Networks Using the Infomap Algorithm. Systems, 12(9), 347. https://doi.org/10.3390/systems12090347