Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement
<p>The flow chart of the proposed retinal segmentation algorithm.</p> "> Figure 2
<p>Intermediary steps of the algorithm (<b>a</b>) result of FVF; (<b>b</b>) tensor visualization of the result of ST using ellipsoids.</p> "> Figure 3
<p>Intermediary steps of the algorithm (<b>a</b>) the result of the anisotropy enhancement; (<b>b</b>) energy matrix before applying CLAHE; (<b>c</b>) energy matrix after applying CLAHE; (<b>d</b>) EMSC; (<b>e</b>) energy after multiplication of CLAHE result and EMSC; (<b>f</b>) revisualization of the obtained new tensor field.</p> "> Figure 4
<p>Intermediary steps of the algorithm (<b>a</b>) map matrix; (<b>b</b>) <span class="html-italic">Colors</span>1; (<b>c</b>) <span class="html-italic">Colors</span>2; (<b>d</b>) <span class="html-italic">Colors</span>3; (<b>e</b>) <span class="html-italic">Colors</span>.</p> "> Figure 5
<p>Intermediary steps of the algorithm (<b>a</b>) image after OTSU; (<b>b</b>) image after post processing; (<b>c</b>) final segmentation result.</p> "> Figure 6
<p>Post-processing procedures on image 2 on STARE dataset (<b>a</b>) retinal image having DR; (<b>b</b>) first segmentation result; (<b>c</b>) product of hue and green colors; (<b>d</b>) effect of histogram-based bright lesion removal step; (<b>e</b>) effect of solidity and eccentricity-based lesion removal step; (<b>f</b>) effect of small hole filling step.</p> "> Figure 7
<p>Segmentation results of the algorithm on DRIVE dataset (<b>a</b>) segmentation of image 2; (<b>b</b>) segmentation of image 9; (<b>c</b>) segmentation of image 14; (<b>d</b>) ground truth of image 2; (<b>e</b>) ground truth of image 9; (<b>f</b>) ground truth of image 14.</p> "> Figure 8
<p>Segmentation results of the algorithm on STARE dataset (<b>a</b>) segmentation of image 7; (<b>b</b>) segmentation of image 8; (<b>c</b>) segmentation of image 12; (<b>d</b>) ground truth of image 7; (<b>e</b>) ground truth of image 8; (<b>f</b>) ground truth of image 12.</p> "> Figure 9
<p>Segmentation results of the algorithm on CHASE_DB1 dataset (<b>a</b>) segmentation of image 5; (<b>b</b>) segmentation of image 9; (<b>c</b>) segmentation of image 27; (<b>d</b>) ground truth of image 5; (<b>e</b>) ground truth of image 9; (<b>f</b>) ground truth of image 27.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Frangi Vesselness Filter
2.2.2. Structure Tensor
2.2.3. Anisotropy Enhancement Using Principal Eigenvalue
2.2.4. Applying CLAHE to Energy of Tensor Field
2.2.5. Enhanced Mean Surface Curvature Multiplication
2.2.6. Tensor Coloring
2.2.7. Post-Processing
3. Evaluation and Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Teng, T.; Lefley, M.; Claremont, D. Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 2002, 40, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Kanski, J.J. Clinical Ophthalmology, 6th ed.; Elsevier Health Sciences: London, UK, 2007. [Google Scholar]
- Zana, F.; Klein, J.C. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans. Med. Imaging 1999, 18, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Mariño, C.; Penedo, G.; Penas, M.; Carreira, J.; Gonzalez, F. Personal authentication using digital retinal images. Pattern Anal. Appl. 2006, 9, 21–33. [Google Scholar] [CrossRef]
- Köse, C.; Ikibas, C. A personal identification system using retinal vasculature in retinal fundus images. Expert Syst. Appl. 2011, 38, 13670–13681. [Google Scholar] [CrossRef]
- Fraz, M.M.; Remagninoa, P.; Hoppea, A.; Uyyanonvarab, B.; Rudnickac, A.R.; Owen, C.G.; Barman, S.A. Blood vessel segmentation methodologies in retinal images—A survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Talwar, R. Review on: Blood Vessel Extraction and Eye Retinopathy Detection. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 7513–7516. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.D.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Gang, L.; Chutatape, O.; Krishnan, S.M. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans. Biomed. Eng. 2002, 49, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef]
- Al-Rawi, M.; Qutaishat, M.; Arrar, M. An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 2007, 37, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Marco, D.; Thomas, S. Ant Colony Optimization; Bradford Company: Holland, MI, USA, 2004. [Google Scholar]
- Cinsdikici, M.G.; Aydin, D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 2009, 96, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, L.; Zhang, L.; Karray, F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 2010, 40, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Nekovei, R.; Ying, S. Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. Neural Netw. 1995, 6, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Sinthanayothin, C.; Boyce, J.F.; Cook, H.L.; Williamson, T.H. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 1999, 83, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, M.; Staal, J.J.; van Ginneken, B.; Loog, M.; Abramoff, M.D. Comparative study of retinal vessel segmentation methods on a new publicly available database. SPIE Med. Imaging 2004, 648–656. [Google Scholar] [CrossRef]
- Shakhnarovic, G.; Darrel, T.; Indyk, P. Nearest-Neighbor Methods in Learning and Vision: Theory and Practice; Neural Information Processing; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Soares, J.V.B.; Leandro, J.J.G.; Cesar, R.M.; Jelinek, H.F.; Cree, M.J. Retinal vessel segmentation using the 2d gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 2006, 25, 1214–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, E.; Perfetti, R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 2007, 26, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.; Aquino, A.; Gegundez-Arias, M.E.; Bravo Caro, J.M. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 2011, 30, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Tolias, Y.A.; Panas, S.M. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans. Med. Imaging 1998, 17, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Simó, A.; de Ves, E. Segmentation of macular fluorescein angiographies. A statistical approach. Pattern Recognit. 2001, 34, 795–809. [Google Scholar] [CrossRef]
- Salem, S.; Salem, N.; Nandi, A. Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med. Biol. Eng. Comput. 2007, 45, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Castaldi, F.; Felipe-Riverón, E.; Sánchez-Fernández, L. A fast, efficient and automated method to extract vessels from fundus images. J. Vis. 2010, 13, 263–270. [Google Scholar] [CrossRef]
- Chutatape, O.; Liu, Z.; Krishnan, S.M. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 29 October–1 November 1998; Volume 3146, pp. 3144–3149. [Google Scholar] [CrossRef]
- Quek, F.K.H.; Kirbas, C. Vessel extraction in medical images by wave-propagation and traceback. IEEE Trans. Med. Imaging 2001, 20, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Delibasis, K.K.; Kechriniotis, A.I.; Tsonos, C.; Assimakis, N. Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput. Methods Programs Biomed. 2010, 100, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Nergiz, M.; Akın, M. Retinal Vessel Segmentation via Tensor Coloring. In Proceedings of the International Engineering, Science and Education Conference, Diyarbakır, Turkey, 1–3 December 2016. [Google Scholar]
- Niemeijer, M.; Staal, J.; Ginneken, B.; Loog, M.; Abramoff, M. Drive: Digital Retinal Images for Vessel Extraction, 2004. Available online: http://www.isi.uu.nl/Research/Databases/DRIVE (accessed on 18 October 2017).
- Owen, C.G.; Rudnicka, A.R.; Mullen, R.; Barman, S.A.; Monekosso, D.; Whincup, P.H.; Ng, J.; Paterson, C. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) Program. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Frangi, A.; Niessen, W.; Vincken, K.; Viergever, M. Multiscale vessel enhancement filtering. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 1998; Volume 1496, pp. 130–137. [Google Scholar] [CrossRef]
- Förstner, W. A Feature Based Corresponding Algorithm for Image Matching. Int. Arch. Photogramm. Remote Sens. 1986, 26, 50–166. [Google Scholar]
- Förstner, W. A Framework for Low Level Feature Extraction. In Proceedings of the Third European Conference on Computer Vision (ECCV’94), Stockholm, Sweden, 2–6 May 1994; Volume 2, pp. 383–394. [Google Scholar] [CrossRef]
- Harris, C.G.; Stevens, M.J. Combined Corner and Edge Detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988. [Google Scholar]
- Köthe, U. Edge and junction detection with an improved structure tensor. In Proceedings of the 25th Dagm Symposium 2003, Magdeburg, Germany, 10–12 Semptember 2003; pp. 25–32. [Google Scholar]
- Brox, T.; Weickert, J.; Burgeth, B.; Mrázek, P. Nonlinear structure tensors. Image Vis. Comput. 2006, 24, 41–55. [Google Scholar] [CrossRef]
- Peyré, G. Geodesic Methods in Computer Vision and Graphics. Found. Trends Comput. Graph. Vis. 2009, 5, 197–397. [Google Scholar] [CrossRef]
- Pisano, E.; Zong, S.; Heminger, B.; Deluca, M.; Johnston, R.; Muller, K.; Breauning, M.P.; Pizer, S.M. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 1998, 11, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Raussen, M. Elementary Differential Geometry: Curves and Surfaces; Department of Mathematical Sciences, Aalborg University: Aalborg, Denmark, 2008; Available online: http://people.math.aau.dk/~raussen/INSB/AD2–11/book.pdf (accessed on 18 October 2017).
- Noumerical-Tours. Available online: https://www.noumerical-tours.com (accessed on 18 October 2017).
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Mathworks. Available online: https://www.mathworks.com/help/images/ref/regionprops.html (accessed on 18 October 2017).
- Zhao, Y.; Rada, L.; Chen, K.; Harding, S.P.; Zheng, Y. Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images. IEEE Trans. Med. Imaging 2015, 34, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Chen, S.; Harris, C. A kernel-based two-class classifier for imbalanced data sets. IEEE Trans. Neural Netw. 2007, 18, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Neto, L.C.; Ramalho, G.L.B.; Rocha Neto, J.F.S.; Veras, R.M.S.; Medeiros, F.N.S. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst. Appl. 2017, 78, 182–192. [Google Scholar] [CrossRef]
- Strisciuglio, N.; Azzopardi, G.; Vento, M.; Petkov, N. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters. Mach. Vis. Appl. 2016, 27, 1137–1149. [Google Scholar] [CrossRef]
- Fan, Z.; Rong, Y.; Lu, J.; Mo, J.; Li, F.; Cai, X.; Yang, T. Automated Blood Vessel Segmentation in Fundus Image Based on Integral Channel Features and Random Forests. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016. [Google Scholar] [CrossRef]
- BahadarKhan, K.; Khaliq, A.A.; Shahid, M. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS ONE 2016, 11, e0158996. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugroho, H.A.; Lestari, T.; Aras, R.A.; Ardiyanto, I. Comparison of Two Different Types of Morphological Method for Feature Extraction of Retinal Vessels in Colour Fundus Images. In Proceedings of the 2016 2nd International Conference on Science in Information Technology (ICSITech), Balikpapan, Indonesia, 26–27 October 2016. [Google Scholar] [CrossRef]
- Kamble, R.; Kokare, M. Automatic Blood Vessel Extraction Technique Using Phase Stretch Transform In Retinal Images. In Proceedings of the 2016 International Conference on Signal and Information Processing (IConSIP), Vishnupuri, India, 6–8 October 2016. [Google Scholar] [CrossRef]
- Singh, N.P.; Srivastava, R. Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Programs Biomed. 2016, 129, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xu, Y.; Wong, D.W.K.; Liu, J. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016. [Google Scholar] [CrossRef]
- Fan, Z.; Mo, J. Automated Blood Vessel Segmentation Based on De-Noising Auto-Encoder and Neural Network. In Proceedings of the 2016 International Conference on Machine Learning and Cybernetics, Jeju, Korea, 10–13 July 2016. [Google Scholar] [CrossRef]
- Liskowski, P.; Krawiec, K. Segmenting Retinal Blood Vessels with Deep Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Budak, Ü.; Şengür, A.; Smarandache, F. A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images. Symmetry 2017, 9, 235–245. [Google Scholar] [CrossRef]
- Al-Diri, B.; Hunter, A.; Steel, D. An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 2009, 28, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.; Gao, Y.; Liew, A.C. General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 2010, 29, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Fraz, M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.; Owen, C.; Barman, S. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 2012, 59, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
Criterion | Sensitivity | Specificity | Accuracy | AUC | Execution Time (Seconds) |
---|---|---|---|---|---|
min | 0.6489 | 0.9047 | 0.8682 | 0.7768 | 5.8531 |
max | 0.8801 | 0.9539 | 0.9323 | 0.9025 | 8.600 |
mean | 0.8123 | 0.9342 | 0.9183 | 0.8732 | 6.104 |
std | 0.0431 | 0.0114 | 0.0105 | 0.0213 | 0.4198 |
Criterion | Sensitivity | Specificity | Accuracy | AUC | Execution Time (Seconds) |
---|---|---|---|---|---|
min | 0.5660 | 0.8925 | 0.8945 | 0.7735 | 5.5979 |
max | 0.9484 | 0.9810 | 0.9622 | 0.9432 | 17.1415 |
mean | 0.8126 | 0.9442 | 0.9312 | 0.8784 | 6.4525 |
std | 0.1176 | 0.0238 | 0.0156 | 0.0498 | 2.5301 |
Criterion | Sensitivity | Specificity | Accuracy | AUC | Execution Time (Seconds) |
---|---|---|---|---|---|
min | 0.6049 | 0.9227 | 0.9091 | 0.7795 | 18.2532 |
max | 0.8309 | 0.9698 | 0.9455 | 0.8910 | 21.7429 |
mean | 0.7246 | 0.9453 | 0.9236 | 0.8349 | 18.8370 |
std | 0.0673 | 0.0140 | 0.0103 | 0.0297 | 0.6771 |
Study | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
Mo and Zhang [47] | 0.7779 | 0.9780 | 0.9521 | 0.9782 |
Neto et al. [48] | 0.7806 | 0.9629 | 0.8718 | - |
Nugroho et al. [53] | 0.9527 | 0.8185 | 0.928 | - |
Liskowski and Karawiec [58] | - | - | 0.9491 | 0.9700 |
Strisciuglio et al. [49] | 0.7655 | 0.9704 | 0.9442 | 0.9614 |
Fan et al. [50] | 0.7190 | 0.985 | 0.961 | - |
Bahadar Khan et al. [51] | 0.7632 | 0.9801 | 0.9607 | 0.863 |
Zhao et al. [45] | 0.742 | 0.982 | 0.954 | 0.862 |
Azzopardi et al. [52] | 0.7655 | 0.9704 | 0.9442 | 0.9614 |
Guo et al. [59] | - | - | - | 0.9476 |
Proposed Method | 0.8123 | 0.9342 | 0.9183 | 0.8732 |
Study | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
Mo and Zhang [47] | 0.8147 | 0.9844 | 0.9674 | 0.9885 |
Neto et al. [48] | 0.8344 | 0.9443 | 0.8894 | - |
Kamble et al. [54] | 0.7177 | 0.9664 | 0.9421 | - |
Nugroho et al. [53] | 0.8927 | 0.7852 | 0.9022 | - |
Liskowski and Karawiec [58] | - | - | 0.9566 | 0.9776 |
Strisciuglio et al. [49] | 0.7716 | 0.9701 | 0.9497 | 0.9563 |
Bahadar Khan et al. [51] | 0.7580 | 0.9627 | 0.9458 | 0.861 |
Singh and Srivastava [55] | 0.7939 | 0.9376 | 0.9270 | 0.9140 |
Zhao et al. [45] | 0.7800 | 0.978 | 0.956 | 0.874 |
Azzopardi et al. [52] | 0.7716 | 0.9701 | 0.9497 | 0.9563 |
Guo et al. [59] | - | - | - | 0.9469 |
Proposed Method | 0.8126 | 0.9442 | 0.9312 | 0.8784 |
Study | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
Mo and Zhang [47] | 0.771 | 0.9816 | 0.9599 | 0.9812 |
Fan et al. [57] | 0.9702 | 0.9702 | 0.6761 | - |
Fu et al. [56] | 0.7130 | - | 0.9489 | - |
Strisciuglio et al. [49] | 0.7585 | 0.9587 | 0.9387 | 0.9487 |
Azzopardi et al. [52] | 0.7585 | 0.9587 | 0.9387 | 0.9487 |
Proposed Method | 0.7246 | 0.9453 | 0.9236 | 0.8349 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nergiz, M.; Akın, M. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement. Symmetry 2017, 9, 276. https://doi.org/10.3390/sym9110276
Nergiz M, Akın M. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement. Symmetry. 2017; 9(11):276. https://doi.org/10.3390/sym9110276
Chicago/Turabian StyleNergiz, Mehmet, and Mehmet Akın. 2017. "Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement" Symmetry 9, no. 11: 276. https://doi.org/10.3390/sym9110276