Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems
<p>(<b>a</b>) the logical gate NOT; (<b>b</b>) circuit with logical gates NOT; (<b>c</b>) state portrait.</p> "> Figure 2
<p>The semi-regular system <math display="inline"> <semantics> <msub> <mover> <mo>Ξ</mo> <mo>¯</mo> </mover> <mo>Φ</mo> </msub> </semantics> </math> from Example 11.</p> "> Figure 3
<p>The semi-regular system <math display="inline"> <semantics> <msub> <mover> <mo>Ξ</mo> <mo>¯</mo> </mover> <mi mathvariant="normal">Ψ</mi> </msub> </semantics> </math> from Example 15.</p> "> Figure 4
<p>Symmetrical systems, Example 27.</p> "> Figure 5
<p>Symmetrical system, Example 28.</p> "> Figure 6
<p>System that is symmetrical relative to the coordinates, Example 32.</p> "> Figure 7
<p>Φ has the automorphism <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>θ</mi> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msub> <mn>1</mn> <msup> <mi mathvariant="bold">B</mi> <mn>3</mn> </msup> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mrow> </semantics> </math> Example 35.</p> "> Figure 8
<p>Φ is symmetrical relative to translations with <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, Example 36.</p> "> Figure 9
<p>Function <span class="html-italic">Φ</span> that is self dual, <math display="inline"> <semantics> <mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>θ</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msub> <mn>1</mn> <msup> <mi mathvariant="bold">B</mi> <mn>2</mn> </msup> </msub> <mo stretchy="false">)</mo> </mrow> <mo>∈</mo> <mover> <mrow> <mi>A</mi> <mi>u</mi> <mi>t</mi> </mrow> <mo>¯</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mo>Φ</mo> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>, Example 37.</p> "> Figure 10
<p>Functions <span class="html-italic">Φ</span> that are self dual, <math display="inline"> <semantics> <mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>θ</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msub> <mn>1</mn> <msup> <mi mathvariant="bold">B</mi> <mn>2</mn> </msup> </msub> <mo stretchy="false">)</mo> </mrow> <mo>∈</mo> <mover> <mrow> <mi>A</mi> <mi>u</mi> <mi>t</mi> </mrow> <mo>¯</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mo>Φ</mo> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>, Example 38.</p> "> Figure 11
<p>Symmetry including symmetry relative to translations, Example 39.</p> ">
Abstract
:1. Introduction
2. Semi-Regular Systems
3. Anti-Semi-Regular Systems
4. Isomorphisms and Anti-Isomorphisms
- (a)
- the diagram
- (b)
- (c)
5. Symmetry and Anti-Symmetry
6. Examples
7. Conclusions
References
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 2nd ed.; Springer: Berlin, Germany, 1997. [Google Scholar]
- Vlad, S.E. Boolean dynamical systems. ROMAI J. 2007, 3, 277–324. [Google Scholar]
- Vlad, S.E. Universal regular autonomous asynchronous systems: Fixed points, equivalencies and dynamical bifurcations. ROMAI J. 2009, 5, 131–154. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vlad, S.E. Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems. Symmetry 2012, 4, 116-128. https://doi.org/10.3390/sym4010116
Vlad SE. Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems. Symmetry. 2012; 4(1):116-128. https://doi.org/10.3390/sym4010116
Chicago/Turabian StyleVlad, Serban E. 2012. "Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems" Symmetry 4, no. 1: 116-128. https://doi.org/10.3390/sym4010116
APA StyleVlad, S. E. (2012). Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems. Symmetry, 4(1), 116-128. https://doi.org/10.3390/sym4010116