HICA: A Hybrid Scientific Workflow Scheduling Algorithm for Symmetric Homogeneous Resource Cloud Environments
<p>A workflow sample organized with DAG.</p> "> Figure 2
<p>A matrix to describe the relation between the tasks in <a href="#symmetry-17-00280-f001" class="html-fig">Figure 1</a>.</p> "> Figure 3
<p>An example of the encoding (based on <a href="#symmetry-17-00280-f001" class="html-fig">Figure 1</a>).</p> "> Figure 4
<p>An example of a colony assimilation operation (based on <a href="#symmetry-17-00280-f001" class="html-fig">Figure 1</a>). The yellow cells represent the elements that perform the operation in the colony assimilation process.</p> "> Figure 5
<p>An example of a colony revolution operation (based on <a href="#symmetry-17-00280-f001" class="html-fig">Figure 1</a>). The yellow cells represent the elements that perform the operation in the colony revolution process.</p> "> Figure 6
<p>The core structure of workflow applications.</p> "> Figure 7
<p>Makespan performance for 100 tasks across scientific workflows. Each subplot represents a different workflow application, and each point in the plot corresponds to the scheduling result of a different algorithm.</p> "> Figure 8
<p>Makespan performance for 1000 tasks across scientific workflows. Each subplot represents a different workflow application, and each point in the plot corresponds to the scheduling result of a different algorithm.</p> "> Figure 9
<p>Cost performance for 100 tasks across scientific workflows. Each subplot represents a different workflow application, and each point in the plot corresponds to the scheduling result of a different algorithm.</p> "> Figure 10
<p>Cost performance for 1000 tasks across scientific workflows. Each subplot represents a different workflow application, and each point in the plot corresponds to the scheduling result of a different algorithm.</p> "> Figure 11
<p>Scheduling results for the ESM parameter tuning workflow, NULL represents the original scenario without using any algorithm.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Workflow Management Tools
2.2. Workflow Scheduling Algorithm
3. Problem Definition
3.1. Workflow Structure
3.2. Time and Cost Calculation
4. Proposed HICA Algorithm
4.1. Encoding
4.2. Fitness Function
4.3. Generate Initial Countries
Algorithm 1 Generate Initial Empires |
Input: The number of country n. Output: n scheduling sequences as the initial countries.
|
4.4. Colonies Assimilation
4.5. Colonies Revolution
4.6. Empire Update
4.7. Imperial Competition
Algorithm 2 Empire competition for colonies. |
|
4.8. Empire Perishes
5. Experiments and Results
5.1. Simulation Setup
5.2. Workflow Applications
5.3. Experimental Results
5.4. An Actual Application Scenario of HICA: Earth System Model (ESM) Parameter Tuning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Performance Metrics | Method | References |
---|---|---|
Deadline and budget | GA | [13] |
Deadline | ACO | [14] |
Deadline and cost | PSO | [15] |
Cost | CSO | [16] |
Cost and load balance | BA | [17] |
Makespan, reliability and energy consumption | NSGA-II | [18] |
Deadline and budget | PSO, BDHEFT | [23] |
Makespan and cost | ALO, SCA | [24] |
Deadline and cost | EAFSA, IC-PCP and EAFSAIPR with HECC | [25] |
Makespan and cost | GA-HEFT | [26] |
Makespan, cost, energy, and throughput | SOA, GOA | [27] |
Makespan, cost and load | ALO, PSO | [28] |
SLR, speed up and efficiency | HDPSO | [29] |
Makespan and resource utilization | HEFT, PSO and GA | [30] |
Makespan and cost | GSA, HEFT | [31] |
Makespan and cost | CS, FPA | [32] |
References
- Talia, D. Workflow systems for science: Concepts and tools. Int. Sch. Res. Not. 2013, 2013, 404525. [Google Scholar] [CrossRef]
- Vaquero, L.M.; Rodero-Merino, L.; Caceres, J.; Lindner, M. A break in the clouds: Towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 2008, 39, 50–55. [Google Scholar] [CrossRef]
- Gong, C.; Liu, J.; Zhang, Q.; Chen, H.; Gong, Z. The characteristics of cloud computing. In Proceedings of the 2010 39th International Conference on Parallel Processing Workshops, San Diego, CA, USA, 13–16 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 275–279. [Google Scholar]
- Arabnejad, H.; Barbosa, J.G. List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 682–694. [Google Scholar] [CrossRef]
- Arabnejad, H.; Barbosa, J.G.; Prodan, R. Low-time complexity budget–deadline constrained workflow scheduling on heterogeneous resources. Future Gener. Comput. Syst. 2016, 55, 29–40. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Da Silva, R.F.; Livny, M.; et al. Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [Google Scholar] [CrossRef]
- Ludäscher, B.; Altintas, I.; Berkley, C.; Higgins, D.; Jaeger, E.; Jones, M.; Lee, E.A.; Tao, J.; Zhao, Y. Scientific workflow management and the Kepler system. Concurr. Comput. Pract. Exp. 2006, 18, 1039–1065. [Google Scholar] [CrossRef]
- Hull, D.; Wolstencroft, K.; Stevens, R.; Goble, C.; Pocock, M.R.; Li, P.; Oinn, T. Taverna: A tool for building and running workflows of services. Nucleic Acids Res. 2006, 34, W729–W732. [Google Scholar] [CrossRef]
- Fahringer, T.; Prodan, R.; Duan, R.; Hofer, J.; Nadeem, F.; Nerieri, F.; Podlipnig, S.; Qin, J.; Siddiqui, M.; Truong, H.L.; et al. Askalon: A development and grid computing environment for scientific workflows. In Workflows for e-Science: Scientific Workflows for Grids; Springer: London, UK, 2007; pp. 450–471. [Google Scholar]
- Konjaang, J.K.; Xu, L. Meta-heuristic approaches for effective scheduling in infrastructure as a service cloud: A systematic review. J. Netw. Syst. Manag. 2021, 29, 15. [Google Scholar] [CrossRef]
- Yu, J.; Buyya, R. Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 2006, 14, 217–230. [Google Scholar] [CrossRef]
- Chen, W.N.; Zhang, J.; Yu, Y. Workflow scheduling in grids: An ant colony optimization approach. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 3308–3315. [Google Scholar]
- Rodriguez, M.A.; Buyya, R. Deadline based resource provisioningand scheduling algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2014, 2, 222–235. [Google Scholar] [CrossRef]
- Bilgaiyan, S.; Sagnika, S.; Das, M. Workflow scheduling in cloud computing environment using Cat Swarm Optimization. In Proceedings of the Souvenir of the 2014 IEEE International Advance Computing Conference, IACC 2014, New Delhi, India, 21–22 February 2014; pp. 680–685. [Google Scholar]
- Sagnika, S.; Bilgaiyan, S.; Mishra, B.S.P. Workflow scheduling in cloud computing environment using bat algorithm. In Proceedings of the First International Conference on Smart System, Innovations and Computing: SSIC 2017, Jaipur, India, 14–16 April 2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 149–163. [Google Scholar]
- Rehani, N.; Garg, R. Meta-heuristic based reliable and green workflow scheduling in cloud computing. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 811–820. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Eng. Comput. 2023, 39, 1583–1616. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 2017, 9, 203. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [Google Scholar] [CrossRef]
- Verma, A.; Kaushal, S. A hybrid multi-objective particle swarm optimization for scientific workflow scheduling. Parallel Comput. 2017, 62, 1–19. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S.; Jafarian, A. A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling. Clust. Comput. 2021, 24, 1479–1503. [Google Scholar] [CrossRef]
- Ramathilagam, A.; Vijayalakshmi, K. Workflow scheduling in cloud environment using a novel metaheuristic optimization algorithm. Int. J. Commun. Syst. 2021, 34, e4746. [Google Scholar] [CrossRef]
- Aziza, H.; Krichen, S. A hybrid genetic algorithm for scientific workflow scheduling in cloud environment. Neural Comput. Appl. 2020, 32, 15263–15278. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Masdari, M. Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective optimization algorithm. J. Ambient Intell. Humaniz. Comput. 2023, 14, 3509–3529. [Google Scholar] [CrossRef]
- Kakkottakath Valappil Thekkepuryil, J.; Suseelan, D.P.; Keerikkattil, P.M. An effective meta-heuristic based multi-objective hybrid optimization method for workflow scheduling in cloud computing environment. Clust. Comput. 2021, 24, 2367–2384. [Google Scholar] [CrossRef]
- Shirvani, M.H. A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems. Eng. Appl. Artif. Intell. 2020, 90, 103501. [Google Scholar] [CrossRef]
- Mikram, H.; El Kafhali, S.; Saadi, Y. HEPGA: A new effective hybrid algorithm for scientific workflow scheduling in cloud computing environment. Simul. Model. Pract. Theory 2024, 130, 102864. [Google Scholar] [CrossRef]
- Choudhary, A.; Gupta, I.; Singh, V.; Jana, P.K. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing. Future Gener. Comput. Syst. 2018, 83, 14–26. [Google Scholar] [CrossRef]
- Sharma, G.; Khurana, S.; Harnal, S.; Lone, S.A. CSFPA: An intelligent hybrid workflow scheduling algorithm based upon global and local optimization approach in cloud. Concurr. Comput. Pract. Exp. 2022, 34, e7176. [Google Scholar] [CrossRef]
- Chen, W.; Deelman, E. Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In Proceedings of the 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [Google Scholar] [CrossRef]
- Nagar, R.; Gupta, D.K.; Singh, R.M. Time effective workflow scheduling using genetic algorithm in cloud computing. Int. J. Inf. Technol. Comput. Sci. 2018, 10, 68–75. [Google Scholar] [CrossRef]
- Manasrah, A.M.; Ba Ali, H. Workflow scheduling using hybrid GA-PSO algorithm in cloud computing. Wirel. Commun. Mob. Comput. 2018, 2018, 1934784. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, B.; Zhang, L. Greedy-ant: Ant colony system-inspired workflow scheduling for heterogeneous computing. IEEE Access 2017, 5, 11404–11412. [Google Scholar] [CrossRef]
- Arshad, R.; Rafeh, R. Deadline-constrained workflow scheduling using imperialist competitive algorithm on infrastructure as a service clouds. In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 5–6 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 835–842. [Google Scholar]
VM Parameters | Value | Cost Parameters | Value |
---|---|---|---|
Number of VMs | 20 | Processing usage cost | 3.0 |
RAM (MB) | 512 | Memory usage cost | 0.05 |
MIPS | 1000 | Storage usage cost | 0.1 |
Bandwidth | 1000 | Bandwidth usage cost | 0.1 |
Scheduling Algorithm | Makespan (Cybershake) | Cost (Cybershake) | ||
---|---|---|---|---|
100 | 1000 | 100 | 1000 | |
PEFT-GA | 322.82 | 1317.34 | 20,075.99 | 100,202.99 |
GA-PSO | 320.52 | 1303.06 | 20,072.50 | 100,200.79 |
Greedy-Ant | 317.65 | 1293.68 | 20,091.28 | 100,207.42 |
ICA | 317.01 | 1297.95 | 20,066.67 | 100,204.14 |
HICA | 314.38 | 1305.88 | 20,066.17 | 100,200.61 |
Scheduling Algorithm | Makespan (Montage) | Cost (Montage) | ||
---|---|---|---|---|
100 | 1000 | 100 | 1000 | |
PEFT-GA | 104.02 | 914.88 | 3435.31 | 36,353.68 |
GA-PSO | 103.93 | 915.30 | 3434.86 | 36,129.15 |
Greedy-Ant | 102.96 | 911.57 | 3455.84 | 36,167.70 |
ICA | 105.05 | 912.36 | 3442.04 | 36,202.52 |
HICA | 103.13 | 906.89 | 3434.86 | 36,148.09 |
Scheduling Algorithm | Makespan (LIGO) | Cost (LIGO) | ||
---|---|---|---|---|
100 | 1000 | 100 | 1000 | |
PEFT-GA | 1878.43 | 11,923.33 | 63,248.79 | 687,190.84 |
GA-PSO | 1720.69 | 11,754.20 | 62,897.45 | 686,868.71 |
Greedy-Ant | 1827.25 | 12,026.83 | 63,038.26 | 686,976.39 |
ICA | 1770.51 | 11,699.45 | 63,038.64 | 686,889.78 |
HICA | 1689.97 | 11,193.08 | 62,989.91 | 686,825.01 |
Scheduling Algorithm | Makespan (SIPHT) | Cost (SIPHT) | ||
---|---|---|---|---|
100 | 1000 | 100 | 1000 | |
PEFT-GA | 4474.77 | 10,517.32 | 52,982.04 | 523,711.12 |
GA-PSO | 4471.01 | 9568.78 | 51,491.16 | 521,853.88 |
Greedy-Ant | 4475.63 | 10,992.78 | 52,413.18 | 522,099.24 |
ICA | 4475.36 | 10,245.28 | 51,678.04 | 521,024.50 |
HICA | 4474.40 | 9801.55 | 50,637.07 | 520,693.86 |
Scheduling Algorithm | Makespan (Epigenomics) | Cost (Epigenomics) | ||
---|---|---|---|---|
100 | 997 | 100 | 997 | |
PEFT-GA | 34,004.63 | 207,211.07 | 1,217,380.43 | 11,714,322.40 |
GA-PSO | 33,486.41 | 212,285.94 | 1,217,308.59 | 11,627,865.76 |
Greedy-Ant | 32,216.08 | 215,343.29 | 1,217,231.84 | 11,644,505.13 |
ICA | 32,324.28 | 216,905.62 | 1,217,202.25 | 11,680,776.96 |
HICA | 32,286.09 | 211,805.01 | 1,217,159.95 | 11,611,202.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Wu, X.; Che, X. HICA: A Hybrid Scientific Workflow Scheduling Algorithm for Symmetric Homogeneous Resource Cloud Environments. Symmetry 2025, 17, 280. https://doi.org/10.3390/sym17020280
Hu L, Wu X, Che X. HICA: A Hybrid Scientific Workflow Scheduling Algorithm for Symmetric Homogeneous Resource Cloud Environments. Symmetry. 2025; 17(2):280. https://doi.org/10.3390/sym17020280
Chicago/Turabian StyleHu, Liang, Xianwei Wu, and Xilong Che. 2025. "HICA: A Hybrid Scientific Workflow Scheduling Algorithm for Symmetric Homogeneous Resource Cloud Environments" Symmetry 17, no. 2: 280. https://doi.org/10.3390/sym17020280
APA StyleHu, L., Wu, X., & Che, X. (2025). HICA: A Hybrid Scientific Workflow Scheduling Algorithm for Symmetric Homogeneous Resource Cloud Environments. Symmetry, 17(2), 280. https://doi.org/10.3390/sym17020280