Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy
<p>Comparison between conventional machine learning and QML.</p> "> Figure 2
<p>Example of data transformation through quantum gate.</p> "> Figure 3
<p>AI GPU server (Nvidia Tesla A100).</p> "> Figure 4
<p>Illustration of VQC algorithm.</p> "> Figure 5
<p>Illustration of Variational Quantum Circuit.</p> "> Figure 6
<p>Example of measurement using qubits.</p> "> Figure 7
<p>Example of loss function.</p> "> Figure 8
<p>Optimization condition exploration of the VQC algorithm.</p> "> Figure 9
<p>Illustration of feature space: 4 × 4 matrix.</p> "> Figure 10
<p>Illustrations of Bloch sphere visualizations before and after rotation through encoding.</p> ">
Abstract
:1. Introduction
1.1. Class Imbalance Problem
1.2. Quantum Machine Learning
2. Materials and Methods
2.1. Materials
2.1.1. Implementation Environment
2.1.2. Input Dataset
2.2. Method
2.2.1. Model Selection
2.2.2. Variational Quantum Classifier
2.2.3. Feature Map Modeling
2.2.4. Variational Circuit Modeling
2.2.5. Measurement
2.2.6. Optimization
2.2.7. Evaluation Metrics
3. Results
3.1. Model Formulation
3.2. Performance Evaluation
3.3. Robustness Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QML | Quantum Machine Learning |
VQC | Variational Quantum Classifier |
QSVM | Quantum Support Vector Machine |
SMOTE | Synthetic Minority Oversampling Technique |
NISQ | Noisy Intermediate-Scale Quantum |
References
- Chen, C.; Wu, X.; Zuo, E.; Chen, C.; Lv, X.; Wu, L. R-GDORUS technology: Effectively solving the Raman spectral data imbalance in medical diagnosis. Chemom. Intell. Lab. Syst. 2023, 235, 104762. [Google Scholar] [CrossRef]
- Ryu, H.S.; Kim, S.H.; Oh, K.J. A study on the performance improvement of machine learning classification model by resolving imbalance in financial data: Focusing on credit card accidents. Quant. Bio-Sci. 2023, 42, 47–56. [Google Scholar]
- Esparza, M.; Farahmand, H.; Brody, S.; Mostafavi, A. Examining data imbalance in crowdsourced reports for improving flash flood situational awareness. Int. J. Disaster Risk Reduct. 2023, 95, 103825. [Google Scholar] [CrossRef]
- Saha, S.; Saha, C.; Haque, M.M.; Alam, M.G.R.; Talukder, A. ChurnNet: Deep learning enhanced customer churn prediction in telecommunication industry. IEEE Access 2024, 12, 4471–4484. [Google Scholar] [CrossRef]
- Kok, C.L.; Ho, C.K.; Aung, T.H.; Koh, Y.Y.; Teo, T.H. Transfer Learning and Deep Neural Networks for Robust Intersubject Hand Movement Detection from EEG Signals. Appl. Sci. 2024, 14, 8091. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Vanderschueren, T.; Verdonck, T.; Baesens, B.; Verbeke, W. Predict-then-optimize or predict-and-optimize? An empirical evaluation of cost-sensitive learning strategies. Inf. Sci. 2022, 594, 400–415. [Google Scholar] [CrossRef]
- Radwan, A.M. Enhancing prediction on imbalance data by thresholding technique with noise filtering. In Proceedings of the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 399–404. [Google Scholar]
- Grossi, M.; Ibrahim, N.; Radescu, V.; Loredo, R.; Voigt, K.; Von Altrock, C.; Rudnik, A. Mixed quantum–classical method for fraud detection with quantum feature selection. IEEE Trans. Quantum Eng. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Weiss, G.M. Foundations of Imbalanced Learning. In Imbalanced Learning:Foundations, Algorithms, and Applications; He, H., Ma, Y., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Liu, C.-L.; Chang, Y.-H. Learning from imbalanced data with deep density hybrid sampling. IEEE Trans. Syst. Man Cybern. Zyst. 2022, 52, 7065–7077. [Google Scholar] [CrossRef]
- Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020, 513, 429–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, Z.; Liu, J.; Feng, Y.; Wee, L.; Traverso, A. GAN-based one dimensional medical data augmentation. Soft Comput. 2023, 27, 10481–10491. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, D.; Nie, T.; Kou, Y.; Yin, N.; Han, X. A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data. Inf. Sci. 2021, 572, 574–589. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, Z.H. The influence of class imbalance on cost-sensitive learning: An empirical study. In Proceedings of the Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 970–974. [Google Scholar]
- Esposito, C.; Landrum, G.A.; Schneider, N.; Stiefl, N.; Riniker, S. GHOST: Adjusting the decision threshold to handle imbalanced data in machine learning. J. Chem. Inf. Model. 2021, 61, 2623–2640. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Diversity analysis on imbalanced data sets by using ensemble models. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving prediction of the minority class in boosting. In Proceedings of the Knowledge Discovery in Databases: PKDD 2003: 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, 22–26 September 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 107–119. [Google Scholar]
- Zhang, P.; Jia, Y.; Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sensor Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Chen, J.; Teo, T.H.; Kok, C.L.; Koh, Y.Y. A Novel Single-Word Speech Recognition on Embedded Systems Using a Convolution Neuron Network with Improved Out-of-Distribution Detection. Electronics 2024, 13, 530. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Cerezo, M.; Verdon, G.; Huang, H.Y.; Cincio, L.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef]
- Zhou, Q.; Tian, G.; Deng, Y. Forecasting Bike Sharing Demand Using Quantum Bayesian Network. arXiv 2022, arXiv:2207.02142. [Google Scholar]
- Zhou, Q.; Tian, G.; Deng, Y. BF-QC: Belief functions on quantum circuits. Expert Syst. Appl. 2023, 223, 119885. [Google Scholar] [CrossRef]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef]
- Bishwas, A.K.; Mani, A.; Palade, V. An all-pair quantum SVM approach for big data multiclass classification. Quantum Inf. Process. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. Prediction by linear regression on a quantum computer. Phys. Rev. A 2016, 94, 022342. [Google Scholar] [CrossRef]
- Wiebe, N.; Braun, D.; Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 2012, 109, 050505. [Google Scholar] [CrossRef]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631–633. [Google Scholar] [CrossRef]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013, arXiv:1307.0411. [Google Scholar]
- Aïmeur, E.; Brassard, G.; Gambs, S. Quantum speed-up for unsupervised learning. Mach. Learn. 2013, 90, 261–287. [Google Scholar] [CrossRef]
- Wiebe, N.; Kapoor, A.; Svore, K. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv 2014, arXiv:1401.2142. [Google Scholar] [CrossRef]
- Kapoor, A.; Wiebe, N.; Svore, K. Quantum perceptron models. arXiv 2016, arXiv:1602.04799. [Google Scholar]
- Menneer, T.; Narayanan, A. Quantum-inspired neural networks. In Proceedings of the Neural Information Processing Systems 95, Denver, CO, USA, 27 November–2 December 1995; MIT Press: Cambridge, MA, USA, 1995; pp. 927–934. [Google Scholar]
- Lu, S.; Braunstein, S.L. Quantum decision tree classifier. Quantum Inf. Process. 2014, 13, 757–770. [Google Scholar] [CrossRef]
- Harikrishnakumar, R.; Nannapaneni, S. Forecasting bike sharing demand using quantum Bayesian network. Expert Syst. Appl. 2023, 221, 119749. [Google Scholar] [CrossRef]
- Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef]
- Chen, S.Y.-C.; Yang, C.-H.H.; Qi, J.; Chen, P.-Y.; Ma, X.; Goan, H.-S. Variational quantum circuits for deep reinforcement learning. IEEE Access 2020, 8, 141007–141024. [Google Scholar] [CrossRef]
- Simões, R.D.M.; Huber, P.; Meier, N.; Smailov, N.; Füchslin, R.M.; Stockinger, K. Experimental evaluation of quantum machine learning algorithms. IEEE Access 2023, 11, 6197–6208. [Google Scholar] [CrossRef]
- de Oliveira, N.M.; Park, D.K.; Araujo, I.F.; da Silva, A.J. Quantum variational distance-based centroid classifier. Neurocomputing 2024, 576, 127356. [Google Scholar] [CrossRef]
- Consul-Pacareu, S.; Montaño, R.; Rodriguez-Fernandez, K.; Corretgé, À.; Vilella-Moreno, E.; Casado-Faulí, D.; Atchade-Adelomou, P. Quantum Machine Learning hyperparameter search. arXiv 2023, arXiv:2302.10298. [Google Scholar]
- Maheshwari, D.; Sierra-Sosa, D.; Garcia-Zapirain, B. Variational quantum classifier for binary classification: Real vs synthetic dataset. IEEE Access 2021, 10, 3705–3715. [Google Scholar] [CrossRef]
- Sim, S.; Johnson, P.D.; Aspuru-Guzik, A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2019, 2, 1900070. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef]
- Schuld, M. Supervised quantum machine learning models are kernel methods. arXiv 2023, arXiv:2101.11020. [Google Scholar]
- Herbst, S.; De Maio, V.; Brandic, I. On optimizing hyperparameters for quantum neural networks. arXiv 2024, arXiv:2403.18579. [Google Scholar]
- Powell, M.J. A view of algorithms for optimization without derivatives. Math. Today-Bull. Inst. Math. Its Appl. 2007, 43, 170–174. [Google Scholar]
- Wu, C.; Wang, N.; Wang, Y. Increasing minority recall support vector machine model for imbalanced data classification. Discret. Dyn. Nat. Soc. 2021, 2021, 6647557. [Google Scholar] [CrossRef]
- Farhadpour, S.; Warner, T.A.; Maxwell, A.E. Selecting and interpreting multiclass loss and accuracy assessment metrics for classifications with class imbalance: Guidance and best practices. Remote Sens. 2024, 16, 533. [Google Scholar] [CrossRef]
- Moro, S.; Cortez, P.; Rita, P. A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 2014, 62, 22–31. [Google Scholar] [CrossRef]
- Lopez-Rojas, E.A.; Axelsson, S. BankSim: A bank payments simulator for fraud detection research. In Proceedings of the European Modeling and Simulation Symposium, Bordeaux, France, 10–12 September 2014; CAL-TEK SRL: Cosenza, Italy, 2014; pp. 144–152. [Google Scholar]
- Gil Fuster, E.M. Variational Quantum Classifier; Facultat de Física, Universitat de Barcelona: Barcelona, Spain, 2019. [Google Scholar]
- Kanazawa, N.; Funaki, I.; Ohira, Y.; Ouchi, K. Variational quantum shot-based simulations for waveguide modes. arXiv 2023, arXiv:2301.12345, 2023. [Google Scholar]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Baygin, N.; Aydemir, E.; Barua, P.D.; Baygin, M.; Dogan, S.; Tuncer, T.; Tan, R.-S.; Acharya, U.R. Automated mental arithmetic performance detection using quantum pattern-and triangle pooling techniques with EEG signals. Expert Syst. Appl. 2023, 227, 120306. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Algarni, M.; Mansour, R.F.; Gupta, D.; Ilayaraja, M. Quantum neural network-based multilabel image classification in high-resolution unmanned aerial vehicle imagery. Soft Comput. 2023, 27, 13027–13038. [Google Scholar] [CrossRef]
- Zeguendry, A.; Jarir, Z.; Quafafou, M. Quantum machine learning: A review and case studies. Entropy 2023, 25, 287. [Google Scholar] [CrossRef] [PubMed]
- Jerbi, S.; Gyurik, C.; Marshall, S.C.; Molteni, R.; Dunjko, V. Shadows of quantum machine learning. Nat. Commun. 2024, 15, 5676. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
QML Algorithms | References | Description |
---|---|---|
QSVM (Quantum Support Vector Machine) | [25,26] | By utilizing Grover’s algorithm for optimization, it is possible to reduce time complexity and find optimal solutions at a faster pace in large datasets. |
Q Linear Regression | [27] | Quantum linear regression is the quantum version of classical linear regression algorithms, modeling relationships between data points to perform predictions. |
Q Least Squares | [28] | The Harrow–Hassidim–Lloyd (HHL) algorithm enables the rapid solution of linear equations, offering an exponential speed advantage over classical methods. By employing the HHL algorithm, we aim to efficiently solve linear systems, significantly improving computation speed while maintaining high accuracy in regression analysis. |
QPCA (Quantum Principal Component Analysis) | [29] | Quantum Principal Component Analysis (QPCA) is the quantum version of Principal Component Analysis (PCA), a technique for identifying the principal components of data to reduce dimensions. QPCA can identify key patterns in large datasets more rapidly than classical PCA. |
Q k-Means | [30] | The Q k-means algorithm is an unsupervised learning algorithm that groups data points into clusters, enhancing efficiency through Grover’s algorithm, allowing for fast clustering in large datasets. |
Q K-Median | [31] | This algorithm finds groups of data points centered around the centroid of each cluster, quickly determining cluster medians using Grover’s search algorithm. |
QKNN (Quantum k-Nearest Neighbors) | [32] | The k-Nearest Neighbors (k-NN) algorithm finds the nearest k neighbors to determine the class of a data point. Quantum k-NN (QKNN) maximizes efficiency by leveraging the parallel processing capabilities of quantum computing. |
Q Perceptron Models | [33] | The perceptron, the basic unit of neural networks, addresses binary classification problems. The quantum perceptron uses quantum states and gates to perform learning and classification. |
Q Neural Networks | [34] | Various neural network architectures, including multilayer perceptrons, are implemented on quantum computers to enhance learning and prediction performance. |
Q Decision Tree | [35] | This approach leverages the strengths of quantum computing to provide faster learning rates and greater data processing capabilities. Quantum decision trees generate classification rules based on data attributes, utilizing quantum states and gates for faster classification. |
Q Bayesian Network | [36] | Q-CBM gives computational benefits for solving complex probabilistic problems such as bike demand forecasting. |
Circuit-centric Quantum Classifiers | [37] | Circuit-centric quantum classifiers are classification algorithms based on quantum circuits. They employ Parameterized Quantum Circuits (PQCs) to learn patterns in data and perform classifications. This approach encompasses Variational Quantum Algorithms (VQAs) and can be applied to various machine learning problems. |
Deep Reinforcement Learning | [38] | Quantum deep reinforcement learning, the quantum version of reinforcement learning, allows agents to learn through interaction with their environment. Quantum reinforcement learning utilizes quantum parallelism and is stated to enable faster and more efficient learning. |
Dataset | Number of Classes | Number of Features | Train Size | Test Size | Total Size | Imbalance Ratio for Dataset | ||
---|---|---|---|---|---|---|---|---|
Before PCA | After PCA | True Ratio | False Ratio | |||||
Seasoning products | 2 | 45 | 4 | 43,047 | 5881 | 48,928 | 98.5% | 1.5% |
Classical/Quantum | Model | Precision | Recall | F1 Score | Time (m) |
---|---|---|---|---|---|
(Macro Avg.) | (Macro Avg.) | (Macro Avg.) | |||
Classical | (1) Random Forest | 0.51 | 0.6 | 0.44 | 0 |
Classical | (2) XGBoost | 0.49 | 0.44 | 0.46 | 4 |
Classical | (3) Extra Tree | 0.51 | 0.62 | 0.45 | 0 |
Classical | (4) GBT | 0.49 | 0.4 | 0.44 | 0 |
Classical | (5) AdaBoost | 0.49 | 0.4 | 0.44 | 0 |
Classical | Ensemble (1), (2), (3), (4), (5) | 0.5 | 0.54 | 0.38 | 0 |
Classical | Stacking (1), (2), (3), (4) | 0.52 | 0.68 | 0.51 | 0 |
Classical | SVM | 0.49 | 0.48 | 0.49 | 0 |
Quantum Simulator | QSVM | 0.53 | 0.87 | 0.47 | 134 |
Quantum Computer | VQC | 0.52 | 0.87 | 0.47 | 7 |
Pauli Gate | Precision | Recall | F1 Score | Runtime (s) |
---|---|---|---|---|
(Macro Avg) | (Macro Avg) | (Macro Avg) | ||
X | 0.49 | 0.50 | 0.50 | 383.89 |
Y | 0.52 | 0.85 | 0.46 | 681.67 |
Z | 0.52 | 0.85 | 0.46 | 585.57 |
XY | 0.52 | 0.85 | 0.46 | 1012.55 |
YX | 0.51 | 0.61 | 0.44 | 1013.30 |
YY | 0.51 | 0.60 | 0.43 | 1043.99 |
YZ | 0.53 | 0.87 | 0.47 | 879.13 |
ZY | 0.53 | 0.87 | 0.47 | 882.51 |
XZ | 0.52 | 0.85 | 0.46 | 831.37 |
ZX | 0.51 | 0.61 | 0.44 | 831.06 |
XYZ | 0.53 | 0.87 | 0.47 | 1126.72 |
Category | Model | RS *-30 | RS *-40 | RS *-50 | RS *-60 | RS *-70 | |
---|---|---|---|---|---|---|---|
Recall (Macro Avg.) | |||||||
SMOTE | Classical | SVM | 0.60 | 0.49 | 0.72 | 0.47 | 0.48 |
Quantum | QSVM | 0.72 | 0.86 | 0.90 | 0.88 | 0.54 | |
Quantum | VQC | 0.78 | 0.91 | 0.90 | 0.90 | 0.77 | |
F1 Score (Macro Avg.) | |||||||
Classical | SVM | 0.57 | 0.49 | 0.58 | 0.48 | 0.48 | |
Quantum | QSVM | 0.47 | 0.44 | 0.50 | 0.45 | 0.45 | |
Quantum | VQC | 0.54 | 0.49 | 0.49 | 0.48 | 0.39 | |
Recall (Macro Avg.) | |||||||
Non-SMOTE | Classical | SVM | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Quantum | QSVM | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | |
Quantum | VQC | 0.71 | 0.98 | 0.89 | 0.96 | 0.73 | |
F1 Score (Macro Avg.) | |||||||
Classical | SVM | 0.49 | 0.50 | 0.49 | 0.50 | 0.49 | |
Quantum | QSVM | 0.49 | 0.50 | 0.50 | 0.50 | 0.49 | |
Quantum | VQC | 0.45 | 0.60 | 0.49 | 0.55 | 0.50 |
Category | Model | Recall (Macro Avg.) | F1 Score (Macro Avg.) | |||
---|---|---|---|---|---|---|
RS *-100 | RS *-300 | RS *-100 | RS *-300 | |||
SMOTE | Classical | SVM | 0.89 | 0.89 | 0.75 | 0.74 |
Quantum | QSVM | 0.84 | 0.86 | 0.74 | 0.74 | |
Quantum | VQC | 0.84 | 0.79 | 0.78 | 0.65 | |
Non-SMOTE | Classical | SVM | 0.50 | 0.60 | 0.47 | 0.62 |
Quantum | QSVM | 0.58 | 0.55 | 0.60 | 0.56 | |
Quantum | VQC | 0.77 | 0.64 | 0.79 | 0.65 |
Category | Model | Recall (Macro Avg.) | F1 Score (Macro Avg.) | |||
---|---|---|---|---|---|---|
RS *-10 | RS *-20 | RS *-10 | RS *-20 | |||
SMOTE | Classical | SVM | 0.50 | 0.84 | 0.50 | 0.90 |
Quantum | QSVM | 0.95 | 0.91 | 0.53 | 0.52 | |
Quantum | VQC | 0.90 | 0.88 | 0.49 | 0.58 | |
Non-SMOTE | Classical | SVM | 0.50 | 0.50 | 0.50 | 0.50 |
Quantum | QSVM | 0.50 | 0.50 | 0.50 | 0.50 | |
Quantum | VQC | 0.99 | 0.95 | 0.69 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Huh, J.; Kwon, S.J.; Choi, S.-h.; Kwon, O. Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy. Symmetry 2025, 17, 186. https://doi.org/10.3390/sym17020186
Kwon S, Huh J, Kwon SJ, Choi S-h, Kwon O. Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy. Symmetry. 2025; 17(2):186. https://doi.org/10.3390/sym17020186
Chicago/Turabian StyleKwon, Seongjun, Jihye Huh, Sang Ji Kwon, Sang-ho Choi, and Ohbyung Kwon. 2025. "Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy" Symmetry 17, no. 2: 186. https://doi.org/10.3390/sym17020186
APA StyleKwon, S., Huh, J., Kwon, S. J., Choi, S.-h., & Kwon, O. (2025). Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy. Symmetry, 17(2), 186. https://doi.org/10.3390/sym17020186