A Survey of Deep Learning-Based Information Cascade Prediction
<p>Deep learning-based information cascade prediction method classification.</p> "> Figure 2
<p>Example of microscopic information cascade prediction.</p> "> Figure 3
<p>Example of macroscopic information cascade prediction.</p> "> Figure 4
<p>Example of topological information cascade prediction.</p> "> Figure 5
<p>Example of content-based information cascade prediction.</p> "> Figure 6
<p>Example of TAN.</p> ">
Abstract
:1. Introduction
- New taxonomy: We propose a new classification method for information cascade prediction. Based on different prediction targets, information cascade prediction can be divided into microscopic information cascade prediction, macroscopic information cascade prediction, and multi-scale information cascade prediction. Additionally, based on different prediction methods, information cascade prediction can be classified into topological information cascade prediction, content-based information cascade prediction, and large model-based information cascade prediction.
- Comprehensive review: We provide the most comprehensive overview of information cascade prediction based on modern deep learning techniques.
- Comprehensive Resource Compilation: We provide a detailed compilation of state-of-the-art models, benchmark datasets, and practical applications that have been widely used in recent deep learning-based information cascade prediction research. We do not merely list resources, but critically analyze and categorize these assets based on their relevance to specific tasks. This survey can serve as a practical guide for understanding, using, and developing various deep-learning methods for different real-world applications.
- Future directions: We discuss the relevant theories of information cascade prediction, analyze the limitations of existing methods, and suggest four potential future research directions: multimodal information fusion, temporal dynamics and real-time prediction, interpretability of large models, and Heterogeneous structures in social networks.
2. Background and Definition
2.1. Background
2.1.1. Feature Engineering-Based Methods
2.1.2. Generative Model-Based Methods
2.1.3. Deep Learning-Based Methods
2.2. Definition
3. Categorization
3.1. Classification Based on Prediction Targets
3.1.1. Microscopic Information Cascade Prediction
3.1.2. Macroscopic Information Cascade Prediction
3.1.3. Multi-Scale Information Cascade Prediction
3.2. Classification Based on Prediction Methods
3.2.1. Topological Information Cascade Prediction
3.2.2. Content-Based Information Cascade Prediction
3.2.3. Large Model-Based Information Cascade Prediction
4. Datasets and Metrics
- Data balancing techniques: Over-sampling underrepresented classes or under-sampling overrepresented classes helps mitigate bias from imbalanced data. Techniques such as SMOTE (Synthetic Minority Over-sampling Technique) or random under-sampling can help balance the dataset, making the model more robust to imbalances.
- Adjusting loss functions: In cases where data imbalances are prevalent, using weighted loss functions or focal loss can help the model focus on harder-to-predict samples, thereby reducing the bias that might arise from an overrepresentation of certain classes.
- Data augmentation and cross-domain learning: Augmenting data by synthetically generating new samples or incorporating data from other domains (e.g., cross-platform learning between Twitter and Weibo) can help improve model generalization and reduce bias from dataset limitations.
5. Applications
6. Future Directions
6.1. Multimodal Information Fusion
6.2. Temporal Dynamics and Real-Time Forecasting
6.3. Interpretability of Large Models
6.4. Heterogeneous Structures in Social Networks
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, F.; Xu, X.; Trajcevski, G.; Zhang, K. A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances. ACM Comput. Surv. 2022, 54, 1–36. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Barabási, A.-L. Quantifying Long-Term Scientific Impact. Science 2013, 342, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Lambiotte, R. TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics. arXiv 2016, arXiv:1603.09449. [Google Scholar] [CrossRef]
- Zhao, Q.; Erdogdu, M.A.; He, H.Y.; Rajaraman, A.; Leskovec, J. SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10 August 2015; pp. 1513–1522. [Google Scholar]
- Mishra, S.; Rizoiu, M.-A.; Xie, L. Feature Driven and Point Process Approaches for Popularity Prediction. Available online: https://arxiv.org/abs/1608.04862v2 (accessed on 25 September 2024).
- Leskovec, J.; Adamic, L.A.; Huberman, B.A. The Dynamics of Viral Marketing. ACM Trans. Web 2007, 1, 5. [Google Scholar] [CrossRef]
- Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the Spread of Influence through a Social Network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; Association for Computing Machinery: New York, NY, USA, 2003; pp. 137–146. [Google Scholar]
- Wang, S.; Hu, L.; Cao, L.; Huang, X.; Lian, D.; Liu, W. Attention-Based Transactional Context Embedding for Next-Item Recommendation. Proc. AAAI Conf. Artif. Intell. 2018, 32, 2532–2539. [Google Scholar] [CrossRef]
- Zhang, Z.-K.; Liu, C.; Zhan, X.-X.; Lu, X.; Zhang, C.-X.; Zhang, Y.-C. Dynamics of Information Diffusion and Its Applications on Complex Networks. Phys. Rep. 2016, 651, 1–34. [Google Scholar] [CrossRef]
- Adamic, L.A.; Lento, T.M.; Adar, E.; Ng, P.C. Information Evolution in Social Networks. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, San Francisco, CA, USA, 8 February 2016; pp. 473–482. [Google Scholar]
- Vosoughi, S.; Roy, D.; Aral, S. The Spread of True and False News Online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef]
- Asur, S.; Huberman, B.A.; Szabo, G.; Wang, C. Trends in Social Media: Persistence and Decay. arXiv 2011, arXiv:1102.1402. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, Y.; Gao, X.; Weng, P.; Chen, G. Dual Sequential Prediction Models Linking Sequential Recommendation and Information Dissemination. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 447–457. [Google Scholar]
- Gao, H.; Kong, D.; Lu, M.; Bai, X.; Yang, J. Attention Convolutional Neural Network for Advertiser-Level Click-Through Rate Forecasting. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 1855–1864. [Google Scholar]
- Cheng, J.; Adamic, L.A.; Dow, P.A.; Kleinberg, J.; Leskovec, J. Can Cascades Be Predicted? In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Republic of Korea, 7–14 April 2014; pp. 925–936. [Google Scholar]
- Cui, P.; Jin, S.; Yu, L.; Wang, F.; Zhu, W.; Yang, S. Cascading Outbreak Prediction in Networks: A Data-Driven Approach. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 901–909. [Google Scholar]
- Ahmed, M.; Spagna, S.; Huici, F.; Niccolini, S. A Peek into the Future: Predicting the Evolution of Popularity in User Generated Content. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 607–616. [Google Scholar]
- Bakshy, E.; Hofman, J.M.; Mason, W.A.; Watts, D.J. Everyone’s an Influencer: Quantifying Influence on Twitter. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 65–74. [Google Scholar]
- Kupavskii, A.; Umnov, A.; Gusev, G.; Serdyukov, P. Predicting the Audience Size of a Tweet. ICWSM 2021, 7, 693–696. [Google Scholar] [CrossRef]
- Szabo, G.; Huberman, B.A. Predicting the Popularity of Online Content. arXiv 2008, arXiv:0811.0405. [Google Scholar] [CrossRef]
- Suh, B.; Hong, L.; Pirolli, P.; Chi, E.H. Want to Be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network. In Proceedings of the 2010 IEEE Second International Conference on Social Computing, Minneapolis, MN, USA, 20–22 August 2010; pp. 177–184. [Google Scholar]
- Yu, H.; Xie, L.; Sanner, S. The Lifecyle of a Youtube Video: Phases, Content and Popularity. Proc. Int. AAAI Conf. Web Soc. Media 2021, 9, 533–542. [Google Scholar] [CrossRef]
- Jenders, M.; Kasneci, G.; Naumann, F. Analyzing and Predicting Viral Tweets. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 657–664. [Google Scholar]
- Carta, S.; Podda, A.S.; Recupero, D.R.; Saia, R.; Usai, G. Popularity Prediction of Instagram Posts. Information 2020, 11, 453. [Google Scholar] [CrossRef]
- Crane, R.; Sornette, D. Robust Dynamic Classes Revealed by Measuring the Response Function of a Social System. Proc. Natl. Acad. Sci. USA 2008, 105, 15649–15653. [Google Scholar] [CrossRef] [PubMed]
- Rizoiu, M.-A.; Xie, L.; Sanner, S.; Cebrian, M.; Yu, H.; Van Hentenryck, P. Expecting to Be HIP: Hawkes Intensity Processes for Social Media Popularity. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 735–744. [Google Scholar]
- Xiao, S.; Yan, J.; Chu, S.M.; Yang, X.; Zha, H. Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks. arXiv 2017, arXiv:1705.08982. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, H.; Liu, S.; Gao, J.; Cheng, X. Cascade Dynamics Modeling with Attention-Based Recurrent Neural Network. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; AAAI Press: Melbourne, Australia, 2017; pp. 2985–2991. [Google Scholar]
- Shen, H.-W.; Wang, D.; Song, C.; Barabási, A.-L. Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes. arXiv 2014, arXiv:1401.0778. [Google Scholar] [CrossRef]
- Gao, J.; Shen, H.; Liu, S.; Cheng, X. Modeling and Predicting Retweeting Dynamics via a Mixture Process. In Proceedings of the 25th International Conference Companion on World Wide Web, Montreal, QC, Canada, 11–15 May 2016; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2016; pp. 33–34. [Google Scholar]
- Gao, S.; Ma, J.; Chen, Z. Modeling and Predicting Retweeting Dynamics on Microblogging Platforms. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 31 January–2 February 2015; Association for Computing Machinery: New York, NY, USA; pp. 107–116. [Google Scholar]
- Liao, D.; Xu, J.; Li, G.; Huang, W.; Liu, W.; Li, J. Popularity Prediction on Online Articles with Deep Fusion of Temporal Process and Content Features. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Honolulu, HI, USA, 2019; pp. 200–207. [Google Scholar]
- Liu, Y.; Bao, Z.; Zhang, Z.; Tang, D.; Xiong, F. Information Cascades Prediction with Attention Neural Network. Hum. Centric Comput. Inf. Sci. 2020, 10, 13. [Google Scholar] [CrossRef]
- Shang, J.; Huang, S.; Zhang, D.; Peng, Z.; Liu, D.; Li, Y.; Xu, L. RNe2Vec: Information Diffusion Popularity Prediction Based on Repost Network Embedding. Computing 2021, 103, 271–289. [Google Scholar] [CrossRef]
- Tang, S.; Li, Q.; Ma, X.; Gao, C.; Wang, D.; Jiang, Y.; Ma, Q.; Zhang, A.; Chen, H. Knowledge-Based Temporal Fusion Network for Interpretable Online Video Popularity Prediction. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 2879–2887. [Google Scholar]
- Xu, K.; Lin, Z.; Zhao, J.; Shi, P.; Deng, W.; Wang, H. Multimodal Deep Learning for Social Media Popularity Prediction With Attention Mechanism. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 4580–4584. [Google Scholar]
- Zhang, Y.; Liu, J.; Guo, B.; Wang, Z.; Liang, Y.; Yu, Z. App Popularity Prediction by Incorporating Time-Varying Hierarchical Interactions. IEEE Trans. Mob. Comput. 2022, 21, 1566–1579. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cao, Q.; Shen, H.; Gao, J.; Wei, B.; Cheng, X. Popularity Prediction on Social Platforms with Coupled Graph Neural Networks. arXiv 2019, arXiv:1906.09032. [Google Scholar]
- Chen, X.; Zhou, F.; Zhang, K.; Trajcevski, G.; Zhong, T.; Zhang, F. Information Diffusion Prediction via Recurrent Cascades Convolution. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 770–781. [Google Scholar]
- Feng, X.; Zhao, Q.; Liu, Z. Prediction of Information Cascades via Content and Structure Proximity Preserved Graph Level Embedding. Inf. Sci. 2021, 560, 424–440. [Google Scholar] [CrossRef]
- Tang, X.; Liao, D.; Huang, W.; Xu, J.; Zhu, L.; Shen, M. Fully Exploiting Cascade Graphs for Real-Time Forwarding Prediction. Proc. AAAI Conf. Artif. Intell. 2021, 35, 582–590. [Google Scholar] [CrossRef]
- Galuba, W.; Aberer, K.; Chakraborty, D.; Despotovic, Z.; Kellerer, W. Outtweeting the Twitterers—Predicting Information Cascades in Microblogs. In Proceedings of the 3rd Wonference on Online Social Networks, Boston, MA, USA, 22–25 June 2010; USENIX Association: Berkeley, CA, USA, 2010; p. 3. [Google Scholar]
- Li, D.; Zhang, S.; Sun, X.; Zhou, H.; Li, S.; Li, X. Modeling Information Diffusion over Social Networks for Temporal Dynamic Prediction. IEEE Trans. Knowl. Data Eng. 2017, 29, 1985–1997. [Google Scholar] [CrossRef]
- Qiu, J.; Li, Y.; Tang, J.; Lu, Z.; Ye, H.; Chen, B.; Yang, Q.; Hopcroft, J. The Lifecycle and Cascade of WeChat Social Messaging Groups. arXiv 2016, arXiv:1512.07831. [Google Scholar]
- Qiu, J.; Tang, J.; Ma, H.; Dong, Y.; Wang, K.; Tang, J. DeepInf: Social Influence Prediction with Deep Learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2110–2119. [Google Scholar]
- Romero, D.M.; Meeder, B.; Kleinberg, J. Differences in the Mechanics of Information Diffusion across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 695–704. [Google Scholar]
- Tang, L.; Huang, Q.; Puntambekar, A.; Vigfusson, Y.; Lloyd, W.; Li, K. Popularity Prediction of Facebook Videos for Higher Quality Streaming; USENIX: Berkeley, CA, USA, 2017; pp. 111–123. [Google Scholar]
- Wang, J.; Zheng, V.W.; Liu, Z.; Chang, K.C.-C. Topological Recurrent Neural Network for Diffusion Prediction. arXiv 2017, arXiv:1711.10162. [Google Scholar]
- Yang, C.; Sun, M.; Liu, H.; Han, S.; Liu, Z.; Luan, H. Neural Diffusion Model for Microscopic Cascade Prediction. arXiv 2018, arXiv:1812.08933. [Google Scholar]
- Zaman, T.R.; Herbrich, R.; Van Gael, J.; Stern, D. Predicting Information Spreading in Twitter. In Proceedings of the Workshop on Computational Social Science and the Wisdom of Crowds, NIPS 2010, Whistler, BC, Canada, 10 December 2010; Volume 104, pp. 17599–17601. [Google Scholar]
- Jinghua, Z.; Jiale, Z.; Juan, F. Information Diffusion Prediction Based on Cascade Sequences and Social Topology. Comput. Electr. Eng. 2023, 109, 108782. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24 August 2014; pp. 701–710. [Google Scholar]
- Li, H.; Xia, C.; Wang, T.; Wang, Z.; Cui, P.; Li, X. GRASS: Learning Spatial–Temporal Properties From Chainlike Cascade Data for Microscopic Diffusion Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2024. early access. [Google Scholar] [CrossRef]
- Cao, Q.; Shen, H.; Cen, K.; Ouyang, W.; Cheng, X. DeepHawkes: Bridging the Gap between Prediction and Understanding of Information Cascades. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1149–1158. [Google Scholar]
- Wang, S.; Zhou, L.; Kong, B. Information Cascade Prediction Based on T-DeepHawkes Model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 715, 012042. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 855–864. [Google Scholar]
- Li, C.; Ma, J.; Guo, X.; Mei, Q. DeepCas: An End-to-End Predictor of Information Cascades. arXiv 2016, arXiv:1611.05373. [Google Scholar]
- Zhong, C.; Xiong, F.; Pan, S.; Wang, L.; Xiong, X. Hierarchical Attention Neural Network for Information Cascade Prediction. Inf. Sci. 2023, 622, 1109–1127. [Google Scholar] [CrossRef]
- Yu, L.; Xu, X.; Zhong, T.; Trajcevski, G.; Zhou, F. Linking Transformer to Hawkes Process for Information Cascade Prediction (Student Abstract). Proc. AAAI Conf. Artif. Intell. 2022, 36, 13103–13104. [Google Scholar] [CrossRef]
- Yang, C.; Wang, H.; Tang, J.; Shi, C.; Sun, M.; Cui, G.; Liu, Z. Full-Scale Information Diffusion Prediction With Reinforced Recurrent Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2271–2283. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, L.; Xu, J.; Wang, L.; Chen, H. MSIDP: Multi-Scale Information Diffusion Prediction with Timestamp Information and Wide Dispersion. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–10. [Google Scholar]
- Zhao, Q.; Zhang, Y.; Feng, X. Predicting Information Diffusion via Deep Temporal Convolutional Networks. Inf. Syst. 2022, 108, 102045. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, F. Attention Based Information Cascade Prediction Model. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 990–996. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2018, arXiv:1706.02216. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903. [Google Scholar]
- Li, Y.; Zhang, Z.-L. Digraph Laplacian and the Degree of Asymmetry. Internet Math. 2012, 8, 381–401. [Google Scholar] [CrossRef]
- Sankar, A.; Zhang, X.; Krishnan, A.; Han, J. Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 20 January 2020; pp. 510–518. [Google Scholar]
- Yuan, C.; Li, J.; Zhou, W.; Lu, Y.; Zhang, X.; Hu, S. DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn Users’ Dynamic Preferences for Information Diffusion Prediction. arXiv 2020, arXiv:2006.05169. [Google Scholar]
- Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph Neural Networks. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3558–3565. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, F.; Torr, P.H.S. Hypergraph Convolution and Hypergraph Attention. Pattern Recognit. 2021, 110, 107637. [Google Scholar] [CrossRef]
- Sun, L.; Rao, Y.; Zhang, X.; Lan, Y.; Yu, S. MS-HGAT: Memory-Enhanced Sequential Hypergraph Attention Network for Information Diffusion Prediction. AAAI 2022, 36, 4156–4164. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Su, Y.; Zhang, Y.; Liu, A.-A. MCDAN: A Multi-Scale Context-Enhanced Dynamic Attention Network for Diffusion Prediction. IEEE Trans. Multimed. 2024, 26, 7850–7862. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Wang, J.; Zha, H. User-Guided Hierarchical Attention Network for Multi-Modal Social Image Popularity Prediction. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 1277–1286. [Google Scholar]
- Wang, W.; Zhang, W.; Wang, J.; Yan, J.; Zha, H. Learning Sequential Correlation for User Generated Textual Content Popularity Prediction. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; AAAI Press: Stockholm, Sweden, 2018; pp. 1625–1631. [Google Scholar]
- Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; Knight, K., Nenkova, A., Rambow, O., Eds.; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 1480–1489. [Google Scholar]
- Ma, T.; Pan, Q.; Rong, H.; Qian, Y.; Tian, Y.; Al-Nabhan, N. T-BERTSum: Topic-Aware Text Summarization Based on BERT. IEEE Trans. Comput. Soc. Syst. 2022, 9, 879–890. [Google Scholar] [CrossRef]
- Li, Z.; Du, H.; Li, X. Topic-Aware Information Coverage Maximization in Social Networks. IEEE Trans. Comput. Soc. Syst. 2024, 11, 1722–1732. [Google Scholar] [CrossRef]
- Jin, M.; Wang, S.; Ma, L.; Chu, Z.; Zhang, J.Y.; Shi, X.; Chen, P.-Y.; Liang, Y.; Li, Y.-F.; Pan, S.; et al. Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. arXiv 2024, arXiv:2310.01728. [Google Scholar]
- Zhong, T.; Zhang, J.; Cheng, Z.; Zhou, F.; Chen, X. Information Diffusion Prediction via Cascade-Retrieved In-Context Learning. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC, USA, 14–18 July 2014; ACM: Washington, DC, USA, 2024; pp. 2472–2476. [Google Scholar]
- Wang, H.; Yang, C.; Shi, C. Neural Information Diffusion Prediction with Topic-Aware Attention Network. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Online, 1–5 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1899–1908. [Google Scholar]
- Hodas, N.O.; Lerman, K. The Simple Rules of Social Contagion. Sci. Rep. 2014, 4, 4343. [Google Scholar] [CrossRef]
- Tang, L.; Liu, H. Relational Learning via Latent Social Dimensions. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 817–826. [Google Scholar]
- Hogg, T.; Lerman, K. Social Dynamics of Digg. arXiv 2012, arXiv:1202.0031. [Google Scholar] [CrossRef]
- Leskovec, J.; Backstrom, L.; Kleinberg, J. Meme-Tracking and the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July; Association for Computing Machinery: New York, NY, USA, 2009; pp. 497–506. [Google Scholar]
- Gehrke, J.; Ginsparg, P.; Kleinberg, J. Overview of the 2003 KDD Cup. SIGKDD Explor. Newsl. 2003, 5, 149–151. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, X. Real-Time Scholarly Retweeting Prediction System. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, Santa Fe, NM, USA, 20–26 August 2018; Zhao, D., Ed.; Association for Computational Linguistics: Santa Fe, NM, USA, 2018; pp. 25–29. [Google Scholar]
- Kim, S.-D.; Kim, S.-H.; Cho, H.-G. Predicting the Virtual Temperature of Web-Blog Articles as a Measurement Tool for Online Popularity. In Proceedings of the 2011 IEEE 11th International Conference on Computer and Information Technology, Paphos, Cyprus, 31 August–2 September 2011; pp. 449–454. [Google Scholar] [CrossRef]
- Chen, G.; Kong, Q.; Mao, W. An Attention-Based Neural Popularity Prediction Model for Social Media Events. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 161–163. [Google Scholar]
- Hong, L.; Dan, O.; Davison, B.D. Predicting Popular Messages in Twitter. In Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 57–58. [Google Scholar] [CrossRef]
- Jamali, S.; Rangwala, H. Digging Digg: Comment Mining, Popularity Prediction, and Social Network Analysis. In Proceedings of the 2009 International Conference on Web Information Systems and Mining, Shanghai, China, 7–8 November 2009; pp. 32–38. [Google Scholar]
- Khabiri, E.; Hsu, C.-F.; Caverlee, J. Analyzing and Predicting Community Preference of Socially Generated Metadata: A Case Study on Comments in the Digg Community. Proc. Int. AAAI Conf. Web Soc. Media 2009, 3, 238–241. [Google Scholar] [CrossRef]
- Bielski, A.; Trzcinski, T. Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention. IEEE Access 2018, 6, 74277–74287. [Google Scholar] [CrossRef]
- Gupta, M.; Gao, J.; Zhai, C.; Han, J. Predicting Future Popularity Trend of Events in Microblogging Platforms. Proc. Am. Soc. Inf. Sci. Technol. 2012, 49, 1–10. [Google Scholar] [CrossRef]
- Gao, S.; Ma, J.; Chen, Z. Effective and Effortless Features for Popularity Prediction in Microblogging Network. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Republic of Korea, 7–11 April 2014; ACM: Seoul, Republic of Korea, 2014; pp. 269–270. [Google Scholar]
- Dong, Y.; Johnson, R.A.; Chawla, N.V. Can Scientific Impact Be Predicted? IEEE Trans. Big Data 2016, 2, 18–30. [Google Scholar] [CrossRef]
- Dong, Y.; Johnson, R.A.; Chawla, N.V. Will This Paper Increase Your H-Index? Scientific Impact Prediction. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2 February 2015; pp. 149–158. [Google Scholar]
- Chen, G.; Kong, Q.; Xu, N.; Mao, W. NPP: A Neural Popularity Prediction Model for Social Media Content. Neurocomputing 2019, 333, 221–230. [Google Scholar] [CrossRef]
- Bao, P.; Shen, H.-W.; Jin, X.; Cheng, X.-Q. Modeling and Predicting Popularity Dynamics of Microblogs Using Self-Excited Hawkes Processes. arXiv 2015, arXiv:1503.02754. [Google Scholar]
- Bao, P.; Zhang, X. Uncovering and Predicting the Dynamic Process of Collective Attention with Survival Theory. Sci. Rep. 2017, 7, 2621. [Google Scholar] [CrossRef]
- Ding, W.; Shang, Y.; Guo, L.; Hu, X.; Yan, R.; He, T. Video Popularity Prediction by Sentiment Propagation via Implicit Network. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015. [Google Scholar]
- Xiao, S.; Yan, J.; Li, C.; Jin, B.; Wang, X.; Yang, X.; Chu, S.M.; Zhu, H. On Modeling and Predicting Individual Paper Citation Count over Time. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; AAAI Press: New York, NY, USA, 2016; pp. 2676–2682. [Google Scholar]
- Yu, L.; Cui, P.; Wang, F.; Song, C.; Yang, S. From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics. arXiv 2015, arXiv:1505.07193. [Google Scholar]
- Romero, D.M.; Galuba, W.; Asur, S.; Huberman, B.A. Influence and Passivity in Social Media. arXiv 2010, arXiv:1008.1253. [Google Scholar] [CrossRef]
- Martin, T.; Hofman, J.M.; Sharma, A.; Anderson, A.; Watts, D.J. Exploring Limits to Prediction in Complex Social Systems. arXiv 2016, arXiv:1602.01013. [Google Scholar]
- Lakkaraju, H.; Ajmera, J. Attention Prediction on Social Media Brand Pages. In Proceedings of the 20th ACM international Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 2157–2160. [Google Scholar]
- Stieglitz, S.; Dang-Xuan, L. Political Communication and Influence through Microblogging–An Empirical Analysis of Sentiment in Twitter Messages and Retweet Behavior. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 3500–3509. [Google Scholar]
- Tatar, A.; Leguay, J.; Antoniadis, P.; Limbourg, A.; de Amorim, M.D.; Fdida, S. Predicting the Popularity of Online Articles Based on User Comments. In Proceedings of the International Conference on Web Intelligence, Mining and Semantics, Sogndal, Norway, 25–27 May 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 1–8. [Google Scholar]
- Ding, K.; Wang, R.; Wang, S. Social Media Popularity Prediction: A Multiple Feature Fusion Approach with Deep Neural Networks. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2682–2686. [Google Scholar] [CrossRef]
- He, X.; Gao, M.; Kan, M.-Y.; Liu, Y.; Sugiyama, K. Predicting the Popularity of Web 2.0 Items Based on User Comments. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 6–11 July 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 233–242. [Google Scholar]
- Oghina, A.; Breuss, M.; Tsagkias, M.; de Rijke, M. Predicting IMDB Movie Ratings Using Social Media. In Advances in Information Retrieval; Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 503–507. [Google Scholar]
- Samanta, B.; De, A.; Chakraborty, A.; Ganguly, N. LMPP: A Large Margin Point Process Combining Reinforcement and Competition for Modeling Hashtag Popularity. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2679–2685. [Google Scholar]
- Trzcinski, T.; Rokita, P. Predicting Popularity of Online Videos Using Support Vector Regression. IEEE Trans. Multimed. 2017, 19, 2561–2570. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, X.; Zhou, H.; Zha, H.; Song, L. Linking Micro Event History to Macro Prediction in Point Process Models. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1375–1384. [Google Scholar]
- Alzahrani, S.; Alashri, S.; Koppela, A.R.; Davulcu, H.; Toroslu, I. A Network-Based Model for Predicting Hashtag Breakouts in Twitter. In Social Computing, Behavioral-Cultural Modeling, and Prediction; Agarwal, N., Xu, K., Osgood, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–12. [Google Scholar]
- Bian, J.; Yang, Y.; Chua, T.-S. Predicting Trending Messages and Diffusion Participants in Microblogging Network. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 6–11 July 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 537–546. [Google Scholar]
- Bora, S.; Singh, H.; Sen, A.; Bagchi, A.; Singla, P. On the Role of Conductance, Geography and Topology in Predicting Hashtag Virality. Soc. Netw. Anal. Min. 2015, 5, 57. [Google Scholar] [CrossRef]
- Gao, X.; Cao, Z.; Li, S.; Yao, B.; Chen, G.; Tang, S. Taxonomy and Evaluation for Microblog Popularity Prediction. ACM Trans. Knowl. Discov. Data 2019, 13, 15:1–15:40. [Google Scholar] [CrossRef]
- Gou, C.; Shen, H.; Du, P.; Wu, D.; Liu, Y.; Cheng, X. Learning Sequential Features for Cascade Outbreak Prediction. Knowl. Inf. Syst. 2018, 57, 721–739. [Google Scholar] [CrossRef]
- Guo, R.; Shaabani, E.; Bhatnagar, A.; Shakarian, P. Toward Order-of-Magnitude Cascade Prediction. arXiv 2015, arXiv:1508.03371. [Google Scholar]
- Wang, S.; Yan, Z.; Hu, X.; Yu, P.S.; Li, Z. Burst Time Prediction in Cascades. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; AAAI Press: Washington, DC, USA, 2015; pp. 325–331. [Google Scholar]
- Chu, Q.; Cao, Z.; Gao, X.; He, P.; Deng, Q.; Chen, G. Cease with Bass: A Framework for Real-Time Topic Detection and Popularity Prediction Based on Long-Text Contents; Chen, X., Sen, A., Li, W.W., Thai, M.T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11280, pp. 53–65. [Google Scholar]
- Guo, R.; Shakarian, P. A Comparison of Methods for Cascade Prediction. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, 18–21 August 2016. [Google Scholar]
- Hoang, M.X.; Dang, X.-H.; Wu, X.; Yan, Z.; Singh, A.K. GPOP: Scalable Group-Level Popularity Prediction for Online Content in Social Networks. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2017; pp. 725–733. [Google Scholar]
- Gursun, G.; Crovella, M.; Matta, I. Describing and Forecasting Video Access Patterns. In Proceedings of the 2011 IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 16–20. [Google Scholar] [CrossRef]
- Kupavskii, A.; Ostroumova, L.; Umnov, A.; Usachev, S.; Serdyukov, P.; Gusev, G.; Kustarev, A. Prediction of Retweet Cascade Size over Time. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 29 October 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 2335–2338. [Google Scholar]
- Rizos, G.; Papadopoulos, S.; Kompatsiaris, Y. Predicting News Popularity by Mining Online Discussions. In Proceedings of the 25th International Conference Companion on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2016; pp. 737–742. [Google Scholar]
- Artzi, Y.; Pantel, P.; Gamon, M. Predicting Responses to Microblog Posts. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Monteal, QC, Canada, 3–8 June 2012; Fosler-Lussier, E., Riloff, E., Bangalore, S., Eds.; Association for Computational Linguistics: Montréal, QC, Canada, 2012; pp. 602–606. [Google Scholar]
- Kong, S.; Ye, F.; Feng, L.; Zhao, Z. Towards the Prediction Problems of Bursting Hashtags on Twitter. J. Assoc. Inf. Sci. Technol. 2015, 66, 2566–2579. [Google Scholar] [CrossRef]
- Krishnan, S.; Butler, P.; Tandon, R.; Leskovec, J.; Ramakrishnan, N. Seeing the Forest for the Trees: New Approaches to Forecasting Cascades. In Proceedings of the 8th ACM Conference on Web Science, Hannover, Germany, 22–25 May 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 249–258. [Google Scholar]
- Romero, D.M.; Tan, C.; Ugander, J. On the Interplay between Social and Topical Structure. Proc. Int. AAAI Conf. Web Soc. Media 2021, 7, 516–525. [Google Scholar] [CrossRef]
- Shamma, D.; Yew, J.; Kennedy, L.; Churchill, E. Viral Actions: Predicting Video View Counts Using Synchronous Sharing Behaviors. ICWSM 2021, 5, 618–621. [Google Scholar] [CrossRef]
- Tsugawa, S. Empirical Analysis of the Relation between Community Structure and Cascading Retweet Diffusion. Proc. Int. AAAI Conf. Web Soc. Media 2019, 13, 493–504. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Chi, C.-H.; Lam, K.-Y.; Wang, S. A Comparative Study of Transactional and Semantic Approaches for Predicting Cascades on Twitter. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1212–1218. [Google Scholar]
- Yi, C.; Bao, Y.; Xue, Y. Mining the Key Predictors for Event Outbreaks in Social Networks. Phys. A Stat. Mech. Its Appl. 2016, 447, 247–260. [Google Scholar] [CrossRef]
- Zhang, B.; Qian, Z.; Lu, S. Structure Pattern Analysis and Cascade Prediction in Social Networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19–23 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 985, pp. 524–539. [Google Scholar]
- Yan, Y.; Tan, Z.; Gao, X.; Tang, S.; Chen, G. STH-Bass: A Spatial-Temporal Heterogeneous Bass Model to Predict Single-Tweet Popularity; Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, S.X., Xiong, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9643, pp. 18–32. [Google Scholar]
- Weng, L.; Menczer, F.; Ahn, Y.-Y. Predicting Successful Memes Using Network and Community Structure. arXiv 2014, arXiv:1403.6199. [Google Scholar] [CrossRef]
- Kefato, Z.T.; Sheikh, N.; Bahri, L.; Soliman, A.; Montresor, A.; Girdzijauskas, S. CAS2VEC: Network-Agnostic Cascade Prediction in Online Social Networks. In Proceedings of the 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), Valencia, Spain, 15–18 October 2018; pp. 72–79. [Google Scholar] [CrossRef]
- Lerman, K.; Hogg, T. Using a Model of Social Dynamics to Predict Popularity of News. arXiv 2010, arXiv:1004.5354. [Google Scholar]
- Lymperopoulos, I.N. Predicting the Popularity Growth of Online Content: Model and Algorithm. Inf. Sci. 2016, 369, 585–613. [Google Scholar] [CrossRef]
- Matsubara, Y.; Sakurai, Y.; Prakash, B.A.; Li, L.; Faloutsos, C. Rise and Fall Patterns of Information Diffusion: Model and Implications. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 6–14. [Google Scholar]
- Yu, L.; Cui, P.; Wang, F.; Song, C.; Yang, S. Uncovering and Predicting the Dynamic Process of Information Cascades with Survival Model. Knowl. Inf. Syst. 2017, 50, 633–659. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, H.; Platt, L.S. Examining Risk and Crisis Communications of Government Agencies and Stakeholders during Early-Stages of COVID-19 on Twitter. Comput. Human Behav. 2021, 114, 106568. [Google Scholar] [CrossRef]
- Morone, F.; Makse, H.A. Influence Maximization in Complex Networks through Optimal Percolation. Nature 2015, 524, 65–68. [Google Scholar] [CrossRef]
- Wu, Y.; McAreavey, K.; Liu, W.; McConville, R. A Comparative Analysis of Information Cascade Prediction Using Dynamic Heterogeneous and Homogeneous Graphs. In Complex Networks & Their Applications XII; Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 168–179. [Google Scholar]
Category | Dataset | Source | Nodes | Edges |
---|---|---|---|---|
Social Networks | Sina weibo | [55] | 10,077 | 11,956 |
[83] | 137,093 | 3,589,811 | ||
BlogCatalog | [84] | 10,312 | 333,983 | |
Flickr | [84] | 80,513 | 5,899,882 | |
Citation Networks | Digg | [85] | 279,632 | 2,617,993 |
Memetracker | [86] | 5000 | 313,669 | |
HEP-PH | [87] | 34,546 | 421,578 | |
APS | [29] | 13,945 | 15,508 |
Metric | Formulation | Reference |
---|---|---|
Accuracy | - | [88,89,90,91,92,93,94,95,96,97,98,99] |
Accuracy with tolerance τ | [29,39,95,100,101,102,103,104] | |
Coefficient of Determination | - | [97,105,106,107,108,109] |
Coefficient of Correlation | - | [4,92,109,110,111,112,113,114,115] |
F1 Score | [15,43,96,97,98,116,117,118,119,120,121] | |
Mean Absolute Error | [3,97,112,122] | |
Mean Abs. Percent. Error | [39,100,101,102,123,124,125,126] | |
Mean Square Error | [119,124,127,128] | |
Precision | [43,46,93,97,98,116,117,118,129,130,131,132,133,134] | |
Recall | [135,136,137,138,139,140] | |
Root Mean Square Error | [109,124,126,141,142,143,144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, X.; Xiong, F.; Chen, H. A Survey of Deep Learning-Based Information Cascade Prediction. Symmetry 2024, 16, 1436. https://doi.org/10.3390/sym16111436
Wang Z, Wang X, Xiong F, Chen H. A Survey of Deep Learning-Based Information Cascade Prediction. Symmetry. 2024; 16(11):1436. https://doi.org/10.3390/sym16111436
Chicago/Turabian StyleWang, Zhengang, Xin Wang, Fei Xiong, and Hongshu Chen. 2024. "A Survey of Deep Learning-Based Information Cascade Prediction" Symmetry 16, no. 11: 1436. https://doi.org/10.3390/sym16111436
APA StyleWang, Z., Wang, X., Xiong, F., & Chen, H. (2024). A Survey of Deep Learning-Based Information Cascade Prediction. Symmetry, 16(11), 1436. https://doi.org/10.3390/sym16111436