A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter?
<p>The red curve shows the scale factor <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>in</mi> </msub> <mo>/</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> at the origin of the Universe (<math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <msub> <mi>t</mi> <mi>in</mi> </msub> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) for flat models, with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, as a function of the present-time <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">m</mi> </msub> </semantics></math>. The present scale factor at <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> is <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for any <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">m</mi> </msub> </semantics></math> (dashed black line). Thus, during the evolution of the Universe from the Big Bang to present time, the value of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> is only vertically moving, for a given <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">m</mi> </msub> </semantics></math>, from the red curve to the black dashed line. This shows that, for increasing densities, the amplitudes of the variations of the scale factor <math display="inline"><semantics> <mi>λ</mi> </semantics></math> are very much reduced; <math display="inline"><semantics> <msub> <mi>t</mi> <mi>in</mi> </msub> </semantics></math> is given in Equation (<a href="#FD2-symmetry-16-01420" class="html-disp-formula">2</a>).</p> "> Figure 2
<p>Evolution of the rotation curve of the Milky Way. The gray points are the velocity averages observed by Huang et al. [<a href="#B44-symmetry-16-01420" class="html-bibr">44</a>], with their error bars. The thick red line represents a mean rotation curve. The thin dashed red line describes the flat mean of the wiggles of the velocity distribution up to a radius of 26 kpc. The brown and orange lines show, respectively, the results of Eilers et al. [<a href="#B45-symmetry-16-01420" class="html-bibr">45</a>] and by Jiao et al. [<a href="#B46-symmetry-16-01420" class="html-bibr">46</a>] for the inner galaxy. The blue lines show the rotation curves predicted by the scale-invariant theory for different ages in the past history of the Universe, starting backwards from the red curve. Calculations have been performed with no dark matter in a model with <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">m</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">b</mi> </msub> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">b</mi> </msub> <mo>=</mo> <mn>0.045</mn> </mrow> </semantics></math>. The thick dashed green line shows a Keplerian curve in <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msqrt> <mi>r</mi> </msqrt> </mrow> </semantics></math> near the age of galaxy formation.</p> "> Figure 3
<p>Projected velocities <math display="inline"><semantics> <msub> <mi>υ</mi> <mi>p</mi> </msub> </semantics></math> as a function of separation <span class="html-italic">s</span> for the main sample in Figure 13 from Chae [<a href="#B62-symmetry-16-01420" class="html-bibr">62</a>]. The very small red dots are the observed values and the blue dots are the Newtonian values in the Monte-Carlo simulations. The larger dots, red (obs.) and blue (simul.) and their connecting lines are the medians and percentiles, as indicated. The central black dashed line shows the Keplerian relation in <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msqrt> <mi>s</mi> </msqrt> </mrow> </semantics></math>. The green lines are additional indications of the mean deviations along the hyperbolic path of the loose systems after 1, 3, and 5 Gyr from the time, <math display="inline"><semantics> <msub> <mi>τ</mi> <mi>N</mi> </msub> </semantics></math>, the transition from Newtonian to dynamical acceleration. The direction of the effects in velocity and separation is indicated by a green arrow at the bottom left. The deviation of a given system increases linearly with time as indicated by Equation (<a href="#FD34-symmetry-16-01420" class="html-disp-formula">34</a>). The mean observed relation for the loose systems corresponds to an evolution during about 2 to 3 Gyr. In a few Gyrs, loose systems drift away from the Newtonian relation in a way compatible with the dynamical evolution. (Figure adapted from Chae [<a href="#B62-symmetry-16-01420" class="html-bibr">62</a>]).</p> "> Figure 4
<p>Comparisons of observations and theory for a sample of 40 very wide binaries with exceptionally precise radial velocities, with individual relative errors smaller than 0.005, as selected by Chae [<a href="#B62-symmetry-16-01420" class="html-bibr">62</a>]. The green broken lines shows the isochrones corresponding to departures from the Newtonian law after 1, 3, and 5 Gyr of evolution under the dynamical acceleration in the scale-invariant theory. The departure from Newton’s relation is progressive and tends towards a value between 3 and 5 Gyr (data are from Chae [<a href="#B62-symmetry-16-01420" class="html-bibr">62</a>]).</p> "> Figure 5
<p>Binned root mean square <math display="inline"><semantics> <mrow> <mo>〈</mo> <mo>Δ</mo> <mi>V</mi> <mo>〉</mo> </mrow> </semantics></math> of the relative velocities in the plane of sky as a function of the 2D projected separation <span class="html-italic">s</span> for 450 binary pairs by Hernandez [<a href="#B58-symmetry-16-01420" class="html-bibr">58</a>]. There is a partial overlap of the binned pairs. The number of binary pairs in the various means are indicated. The green lines show the isochrones corresponding to departures from the Newtonian law after 1, 3, and 5 Gyr of evolution (adapted from [<a href="#B58-symmetry-16-01420" class="html-bibr">58</a>]).</p> "> Figure 6
<p>The red thick curve represents the mass–luminosity relation on the zero-age sequence [<a href="#B71-symmetry-16-01420" class="html-bibr">71</a>], according to the scale indicated on the left vertical axis. The other curves describe various IMF: Chabrier [<a href="#B68-symmetry-16-01420" class="html-bibr">68</a>], Salpeter with <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1.35</mn> </mrow> </semantics></math> [<a href="#B73-symmetry-16-01420" class="html-bibr">73</a>], and the so-called Super-Salpeter by [<a href="#B67-symmetry-16-01420" class="html-bibr">67</a>], according to the scale indicated on the right vertical axis. Note that, in <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>(</mo> <mi>log</mi> <mi>m</mi> <mo>)</mo> </mrow> </semantics></math>, the log is a decimal. The Figure is inspired by [<a href="#B67-symmetry-16-01420" class="html-bibr">67</a>].</p> ">
Abstract
:1. Introduction
2. The Origin and Properties of the Scale-Invariant Theory
3. The Mass Excess in Clusters of Galaxies
4. Galactic Rotation
4.1. Binet Equation, Angular Momentum, Secular Variations, and Velocities
4.2. Recent Observations
4.3. Predicted Effects in the Galactic Evolution
- In the past, the extent of galaxies was smaller than today. Galaxies were more compact according to the ratio given by Equation (27).
- The cosmic expansion associated with scale invariance flattens the rotation curves as galaxies age.
- In the past, the rotation curves should have steeper decrease and closer to the galactic center than today, thus suggesting smaller fractions of dark matter in the past. This of course does not preclude other current effects of stellar dynamics to operate over the ages.
4.4. Some Recent Results in Redshifted Galaxies
4.5. The Connection Between Dark Matter and Baryons: The Signature of a Gravity Effect
5. Wide Binary Stars
5.1. Current Status of Observational Results on Very Wide Binaries
5.2. Dynamical Evolution of Loose and Detached Systems
5.3. Comparison with the Analysis by Chae [62]
5.4. Comparison with the Analysis by Hernandez [58]
6. The Discrepancy Between the Lensing and the Spectroscopic Mass of Galaxies
6.1. The Geodesic of Deflected Light Rays in the Scale-Invariant Theory
6.2. The Invariance of Lensing to Scale Transformations
6.3. The Problem of the Photometric Masses: The Case of JWST-ER1
6.4. The Masses from the Sloan Lens ACS (SLACS) Survey
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dirac, P.A.M. Long range forces and broken symmetries. Proc. R. Soc. Lond. Ser. A 1973, 333, 403. [Google Scholar]
- Canuto, V.; Adams, P.J.; Hsieh, S.-H.; Tsiang, E. Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 1977, 16, 1643. [Google Scholar] [CrossRef]
- Maeder, A. An Alternative to the LambdaCDM Model: The Case of Scale Invariance. Astrophys. J. 2017, 834, 194. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Action Principle for Scale Invariance and Applications (Part I). Symmetry 2023, 15, 1966. [Google Scholar] [CrossRef]
- Gueorguiev, V.; Maeder, A. The Scale-Invariant Vacuum Paradigm: Main Results and Current Progress Review (Part II). Symmetry 2024, 16, 657. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. The Scale-Invariant Vacuum (SIV) Theory: A Possible Origin of Dark Matter and Dark Energy. Universe 2020, 6, 46. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. The growth of the density fluctuations in the scale-invariant vacuum theory. Phys. Dark Universe 2019, 25, 100315. [Google Scholar] [CrossRef]
- Maeder, A.; Bouvier, P. Scale invariance, metrical connection and the motions of astronomical bodies. Astron. Astrophys. 1979, 73, 82. [Google Scholar]
- Peterson, M.A. Galileo’s Discovery of Scaling Laws. arXiv 2001, arXiv:physics/0110031. [Google Scholar]
- Feynman, R.P.; Leigfhton, R.; Sands, M. Feynman Lectures on Physics, Volume 1: Mainly Mechanics, Radiation and Heat; Addison-Wesley: Boston, MA, USA, 1963; 560p. [Google Scholar]
- Weyl, H. Raum, Zeit, Materie. Vorlesungen über allgemeine Relativitätstheorie; Re-Edited 1970; Springer: Berlin/Heidelberg, Germany, 1923. [Google Scholar]
- Eddington, A.S. The Mathematical Theory of Relativity; Chelsea Publ. Co.: New York, NY, USA, 1923; 266p. [Google Scholar]
- Einstein, A. Kommentar zu “Hermann Weyl: Gravitation und Elektrizität”; Sitzung Berichte der Königlich Preussischen Akademie des Wissenschaften: Berling, Germany, 1918; p. 478. [Google Scholar]
- Karananas, G.K.; Shaposhnikov, M.; Shkerin, A.; Zell, S. Scale and Weyl invariance in Einstein–Cartan gravity. Phys. Rev. D 2021, 104, 124014. [Google Scholar] [CrossRef]
- Einasto, J.; Einasto, M.; Gramann, M. Structure nd formation of superclusters—IX. Self-similarity of voids. Mon. Not. R. Astron. Soc. 1989, 238, 155. [Google Scholar] [CrossRef]
- Bouvier, P.; Maeder, A. Consistency of Weyl’s Geometry as a Framework for Gravitation. Astrophys. Space Sci. 1978, 54, 497. [Google Scholar] [CrossRef]
- Maeder, A. MOND as a peculiar case of the SIV theory. Mon. Not. R. Astron. Soc. 2023, 520, 1447. [Google Scholar] [CrossRef]
- Einstein, A. Autobiographical Notes; Open Court Publ. Co., La Salle: Chicago, IL, USA, 1949. [Google Scholar]
- Dirac, P.A.M. Cosmological Models and the Large Numbers Hypothesis. Proc. R. Soc. Lond. Ser. A 1974, 338, 439. [Google Scholar]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophs. 1992, 30, 499. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale invariance, horizons, and inflation. Mon. Not. R. Astron. Soc. 2021, 504, 4005. [Google Scholar] [CrossRef]
- Jesus, J.F. Exact solution for flat scale-invariant cosmology. Rev. Mex. Astron. Astrophys. 2018, 55, 17. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Baccigalupi, C.; Ballardini, M. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Maeder, A. Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter? Astrophys. J. 2017, 849, 158. [Google Scholar] [CrossRef]
- Maeder, A. Four Basic Solar and Stellar Tests of Cosmologies with Variable Past G and Macroscopic Masses. A&A 1977, 56, 359. [Google Scholar]
- Fujii, Y.; Maeda, K.-I. The Scalar-Tensor Theory of Gravity; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1. [Google Scholar]
- Ikeda, S.; Saridakis, E.N.; Stavrinos, P.C. Cosmology of Lorentz fiber-bundle induced scalar-tensor theories. Phys. Rev D. 2019, 100, 12403. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helevetica Phys. Acta 1933, 6, 10. [Google Scholar]
- Karachentsev, I.D. The virial mass-luminosity ratio and the instability of different galactic systems. Astrophysics 1967, 2, 39. (In English) [Google Scholar] [CrossRef]
- Sohn, J.; Geller, M.J.; Zahid, H.J.; Fabricant, D.G.; Diaferio, A.; Rines, K.J. The Velocity Dispersion Function of Very Massive Galaxy Clusters: Abell 2029 and Coma. Astrophys. J. Suppl. Ser. 2016, 229, 20. [Google Scholar] [CrossRef]
- Bahcall, N. The Perseus Cluster: Galaxy Distribution, Anisotropy, and the Mass/Luminosity Ratio. Astrophys. J. 1974, 187, 439. [Google Scholar] [CrossRef]
- Blindert, K.; Yee, H.K.C.; Gladders, M.D.; Yee, H.K.C.; Gladders, M.D.; Ellingson, E. Dynamical masses of RCS galaxy clusters. IAU Coll. 2004, 195, 215. [Google Scholar] [CrossRef]
- Proctor, R.N.; Mendes de Oliveira, C.; Azanha, L. A derivation of masses and total luminosities of galaxy groups and clusters in the maxBCG catalogue. Mon. Not. R. Astron. Soc. 2015, 449, 2345. [Google Scholar] [CrossRef]
- Chiu, I.; Mohr, C.L.; McDonald, M.; Bocquet, S.; Ashby, M.L.N.; Bayliss, M. Baryon content of massive galaxy clusters at 0.57 < z < 1.33. Mon. Not. R. Astron. Soc. 2016, 455, 258. [Google Scholar]
- Ge, C.; Wang, Q.D.; Tripp, T.M.; Li, Z.; Gu, Q.; Ji, L. Baryon content and dynamic state of galaxy clusters: XMM-Newton observations of A1095 and A1926. Mon. Not. R. Astron. Soc. 2016, 459, 366. [Google Scholar] [CrossRef]
- Gonzalez, A.H.; Sivanandam, S.; Zabludoff, A.I. Tracing Cosmic Evolution with Clusters of Galaxies. Available online: https://www.sexten-cfa.eu/event/tracing-cosmic-evolution-with-clusters-of-galaxies-2013/ (accessed on 5 July 2013).
- Leauthaud, A.; Leauthaud, A.; George, M.R.; Behroozi, P.S.; Bundy, K.; Tinker, J.; Wechsler, R.H. The Integrated Stellar Content of Dark Matter Halos. Astrophys. J. 2012, 746, 95. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Stanford, S.A.; Eisenhardt, P.R.M.; Vikhlinin, A.; Maughan, B.J.; Kravtsov, A. Baryon Content of Massive Galaxy Clusters at z = 0–0.6. Astrophys. J. 2012, 745, L3. [Google Scholar] [CrossRef]
- Shan, Y.; McDonald, M.; Courteau, S. Revised Mass-to-light Ratios for Nearby Galaxy Groups and Clusters. Astrophys. J. 2015, 800, 122. [Google Scholar] [CrossRef]
- Chan, M.H. Two mysterious universal dark matter-baryon relations in galaxies and galaxy clusters. Phys. Dark Universe 2022, 38, 101142. [Google Scholar] [CrossRef]
- Trimble, V. Existence and nature of dark matter in the Universe. Annu. Rev. Astron. Astrophs. 1987, 25, 425. [Google Scholar] [CrossRef]
- Sofue, Y.; Rubin, V. Rotation Curves of Spiral Galaxies. Annu. Rev. Astron. Astrophys. 2001, 39, 137. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, X.-W.; Yuan, H.-B.; Xiang, M.S.; Zhang, H.W.; Chen, B.Q. The Milky Way’s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution. Mon. Not. R. Astron. Soc. 2016, 463, 2623. [Google Scholar] [CrossRef]
- Eilers, A.-C.; Hogg, D.W.; Ris, H.W.; Ness, M.K. The circular velocity curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 2019, 871, 120. [Google Scholar] [CrossRef]
- Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y. Detection of the Keplerian decline in the Milky Way rotation curve. Astron. Astrophys. 2023, 678, A208. [Google Scholar] [CrossRef]
- Maeder, A. Observational tests in scale invariance I: Galaxy clusters and rotation of galaxies. submitted. arXiv 2024, arXiv:2403.08759. [Google Scholar]
- Genzel, R.; Forster Schreiber, N.M.; Ubler, H. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 2017, 543, 397. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.; Forster Schreiber, N.M.; Genzel, R. Falling Outer Rotation Curves of Star-forming Galaxies at 0 <z < 2.6 Probed with KMOS3D and SINS/zC-SINF. Astrophys. J. 2017, 840, 92L. [Google Scholar]
- Genzel, R.; Price, S.H.; Ubler, H.; Schreiber, N.F.; Shimizu, T.T.; Tacconi, L.J. Rotation Curves in z 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophys. J. 2020, 902, 98. [Google Scholar] [CrossRef]
- Nestor Shachar, A.; Price, S.H.; Schreiber, N.F.; Genzel, R.; Shimizu, T.T.; Tacconi, L.J. RC100: Rotation Curves of 100 Massive Star-forming Galaxies at z = 0.6–2.5 Reveal Little Dark Matter on Galactic Scales. Astrophys. J. 2023, 944, 78. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidal. Mon. Not. R. Astron. Soc. 2020, 492, 2698. [Google Scholar] [CrossRef]
- Hernandez, X.; Cookson, S.; Cortes, R.A.A. Internal kinematics of Gaia eDR3 wide binaries. Mon. Not. R. Astron. Soc. 2022, 502, 2304. [Google Scholar] [CrossRef]
- Brown, A.G.; Vallenari, A.; Prusti, T.; De Bruijne, J.H.; Babusiaux, C.; Biermann, M. Gaia Early Data Release 3. The Gaia Catalogue of Nearby Stars. Astron. Astrophys. 2021, 649, A1. [Google Scholar]
- Milgrom, M. A modification of the newtonian dynamics: Implications for galaxy systems. Astrophys. J. 1983, 270, 365. [Google Scholar] [CrossRef]
- Milgrom, M. The Mond Limit from Spacetime Scale Invariance. Astrophys. J. 2009, 698, 1630. [Google Scholar] [CrossRef]
- Hernandez, X. Internal kinematics of Gaia DR3 wide binaries: Anomalous behaviour in the low acceleration regime. Mon. Not. R. Astron. Soc. 2023, 525, 1401. [Google Scholar] [CrossRef]
- Pittordis, C.; Sutherland, W. Wide Binaries from Gaia EDR3: Preference for GR over Mond? Open J. Astrophys. 2023, 6, 4. [Google Scholar] [CrossRef]
- Chae, H.-K. Breakdown of the Newton—Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars. Astrophys. J. 2023, 952, 128. [Google Scholar] [CrossRef]
- Banik, I.; Pittordis, C.; Sutherland, W.; Famaey, B.; Ibata, R.; Mieske, S.; Zhao, H. Strong constraints on the gravitational law from Gaia DR3 wide binaries. Mon. Not. R. Astron. Soc. 2024, 527, 4573. [Google Scholar] [CrossRef]
- Chae, H.-K. Robust Evidence for the Breakdown of Standard Gravity at Low Acceleration from Statistically Pure Binaries Free of Hidden Companions. arXiv 2024, arXiv:2309.10404. [Google Scholar]
- El-Badry, K.; Rix, H.W.; Heinz, T.M. A million binaries from Gaia eDR3: Sample selection and validation of Gaia parallax uncertainties. Mon. Not. R. Astron. Soc. 2021, 2269, 506. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Tremaine, S. The evolution of wide binary starsThe evolution of wide binary stars. Mon. Not. R. Astron. Soc. 2010, 401, 977. [Google Scholar] [CrossRef]
- Loeb, A. Gravitational Redshift for Wide Binaries in Gaia eDR3. Res. Note AAS 2022, 6, 55. [Google Scholar] [CrossRef]
- Kottler, F. Uber die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys. 1918, 361, 401. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Brammer, G.; Wang, B.; Leja, J.; Conroy, C. A massive compact quiescent galaxy at z = 2 with a complete Einstein ring in JWST imaging. Nat. Astron. 2023, 8, 119. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763. [Google Scholar] [CrossRef]
- Mercier, W.; Shuntov, R.; Gavazzi, J.W.; Nightingale, J.W.; Arango, R.; Ilbert, O. The COSMOS-Web ring: In-depth characterization of an Einstein ring lensing system at z∼2. A&A 2024, 687, A61. [Google Scholar]
- Johnson, B.D.; Leja, J.; Conroy, C.; Speagle, J.S. Stellar Population Inference with Prospector. Astrophys. J. Suppl. Ser. 2021, 254, 22. [Google Scholar] [CrossRef]
- Maeder, A. Physics, Formation and Evolution of Rotating Stars; Springer: Berlin/Heidelberg, Germany, 2009; 829p. [Google Scholar]
- Longair, M.S. Galaxy Formation; Springer: Berlin/Heidelberg, Germany, 1998; 536p. [Google Scholar]
- Salpeter, E. The Luminosity Function and Stellar Evolution. Astrophys. J. 1955, 121, 161. [Google Scholar] [CrossRef]
- Bolton, A.; Burles, S.; Koopmans, L.V.; Treu, T.; Gavazzi, R.; Moustakas, L.A. The Sloan Lens ACS Survey. V. The Full ACS Strong-Lens Sample. Astrophys. J. 2008, 682, 964. [Google Scholar] [CrossRef]
- Auger, M.W.; Treu, T.; Bolton, A.S.; Gavazzi, R.; Koopmans, L.V.E.; Marshall, P.J. The SLOAN lens ACS Survey. XI. Colors, lensing and stellar masses of early-type galaxies. Astrophys. J. 2009, 705, 1099. [Google Scholar] [CrossRef]
N | |||||||
---|---|---|---|---|---|---|---|
0.114 | 0.449 | 0.792 | 0.110 | 0.197 | 0.95 | 17 | |
0.218 | 0.419 | 0.745 | 0.053 | 0.130 | 1.04 | 39 | |
0.383 | 0.357 | 0.626 | 0.079 | 0.136 | 1.07 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeder, A.; Courbin, F. A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter? Symmetry 2024, 16, 1420. https://doi.org/10.3390/sym16111420
Maeder A, Courbin F. A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter? Symmetry. 2024; 16(11):1420. https://doi.org/10.3390/sym16111420
Chicago/Turabian StyleMaeder, André, and Frédéric Courbin. 2024. "A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter?" Symmetry 16, no. 11: 1420. https://doi.org/10.3390/sym16111420
APA StyleMaeder, A., & Courbin, F. (2024). A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter? Symmetry, 16(11), 1420. https://doi.org/10.3390/sym16111420