Multidimensional Representation of Semantic Relations between Physical Theories, Fundamental Constants and Units of Measurement with Formal Concept Analysis
<p>Bronstein’s space of physical theories. The image was taken from [<a href="#B2-symmetry-16-00899" class="html-bibr">2</a>], under a Creative Commons Copyright License.</p> "> Figure 2
<p>Bronstein’s space of physical theories and their correlation to cosmology. “Continues lines correspond to already existing theories. Dotted lines correspond to still unresolved problems” (Image taken from [<a href="#B2-symmetry-16-00899" class="html-bibr">2</a>] under a Creative Commons Copyright License).</p> "> Figure 3
<p>Redrawing of Zel’manov’s cube of physical theories in the cG<span class="html-italic">ℏ</span> coordinate system, as described by Gorelik and Frenkel [<a href="#B8-symmetry-16-00899" class="html-bibr">8</a>]. Acronyms are as follows: NG: Newton’s theory of gravity; STR: Special theory of relativity; QM: Quantum mechanics; GTR: General theory of relativity; SRQFT: Specially relativistic quantum field theory, GRQT: General relativistic quantum theory. Notice there are two corners without a label.</p> "> Figure 4
<p>On the left: the cube of physical theories by Okun [<a href="#B7-symmetry-16-00899" class="html-bibr">7</a>], where TOE, NM and QFT appear, and the c axis is now the 1/c axis. The abbreviations in the diagram stand for NM—Newtonian Mechanics; NG—Newtonian Gravity; STR—Special Theory of Relativity; QM—Quantum Mechanics; GTR—General Theory of Relativity; NQG—Non-relativistic Quantum Gravity; QFT—Quantum Field Theory; TOE—Theory of Everything. The figure on the right corresponds to the lattice of physical theories. Unlike a cube with coordinate axes, where Newtonian Mechanics (NM) lies at «the origin» (0,0,0), here it lies in the supreme node while the Theory of Everything (TOE) is at the bottom node. We have generalized even more the names for NQG to non-Relativist Quantum Gravitation (nRQG), QM to non-Relativistic Quantum Physics, and QFT to Relativist Quantum Physics (RQPh) in order to accommodate other models that would describe such regimes.</p> "> Figure 5
<p>Lattice of fundamental constants includes Milgrom’s constant <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> and four new model theories: Extended Gravitation (ExG), Extended Relativistic Gravitation (ExRG) and Extended Quantum Gravitation (ExQG). Relativistic Quantum Gravity (QGR) replaces the original Theory Of Everything (TOE), leaving the new TOE in the lowest node, which does not exist either, but would have to include all fundamental constants—that is, all regimes. Blue half nodes indicate a new attribute; black half nodes indicate a new object.</p> "> Figure 6
<p>Concept lattice with more constants: the electric charge <span class="html-italic">e</span>, Boltzmann’s constant <span class="html-italic">k</span> and Milgrom’s acceleration <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> call for the Electrodynamic Theory, Quantum Relativistic Extended Gravitation and Thermodynamics.</p> "> Figure 7
<p>Two representations of the relationships between units of the international system through fundamental constants. The left image was taken from Pisanty [<a href="#B49-symmetry-16-00899" class="html-bibr">49</a>] under a Creative Commons Copyright License and the right one is our proposal. The colors used in the lattice follow Pisanty’s selection to facilitate comparison between both diagrams.</p> "> Figure 8
<p>Hierarchical network for derived magnitudes. Red arrows represent multiplication of basic units. Blue arrows represent a division of basic units. Dotted bold arrows keep the hierarchical relations brought from Pisanty’s network.</p> "> Figure 9
<p>Hierarchical network for derived magnitudes with fundamental constants (circle nodes).</p> ">
Abstract
:1. Introduction
“These quantities retain their natural significance as long as the law of gravitation and that of the propagation of light in a vacuum and the two principles of thermodynamics remain valid; they therefore must be found always to be the same, when measured by the most widely differing intelligences according to the most widely differing methods”.
2. Formal Concept Analysis
3. Structuralism
4. Physical Theories Lattice
5. The International System of Units
6. Insights and Follow Ups
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okun, L. On the article of G. Gamow, D. Ivanenko, and L. Landau “World constants and limiting transition”. Phys. At. Nucl. 2002, 65, 1370–1372. [Google Scholar] [CrossRef]
- Gorelik, G.E.; Frenkel, V.Y. Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties, 1st ed.; Science Networks. Historical Studies; Birkhäuser: Basel, Switzerland, 1994; p. 208. [Google Scholar] [CrossRef]
- Gamow, G.; Ivanenko, D.; Landau, L. World constants and limiting transition. Phys. At. Nucl. 2002, 65, 1373–1375. [Google Scholar] [CrossRef]
- Barrow, J.D. The Constants of Nature: From Alpha to Omega—The Numbers that Encode the Deepest Secrets of the Universe; Pantheon Books: New York, NY, USA, 2002. [Google Scholar]
- Bronstein, M.P. The problem of the possible theory of the World as a whole. Uspekhi Astron. Nauk. 1933, 3, 3–30. [Google Scholar]
- Zel’ manov, A. Kosmologia. In Development of Astronomy in the USSR; Nauka: Moscow, Russia, 1967; pp. 320–390. [Google Scholar]
- Okun, L.B. The fundamental constants of physics. Sov. Phys. Uspekhi 1991, 34, 818. [Google Scholar] [CrossRef]
- Gorelik, G.E.; Frenkel, V.Y. Matvey Petrovich Bronstein: 1906–1938; Scientific and Biographical Series; Nauka: Moscow, Russia, 1990; p. 272. [Google Scholar]
- Duff, M.J.; Okun, L.B.; Veneziano, G. Trialogue on the number of fundamental constants. J. High Energy Phys. 2002, 3, 23. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Magueijo, J. Faster Than the Speed of Light: The Story of a Scientific Speculation; Perseus Book Group: New York, NY, USA, 2003. [Google Scholar]
- Martinez-Ledesma, J.L.; Mendoza, S. Possible cosmological implications in electrodynamics due to variations of the fine structure constant. Rev. Mex. De Fis. 2004, 50, 337–339. [Google Scholar]
- Dirac, P.A.M. The Cosmological constants. Nature 1937, 139, 323. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A New Basis for Cosmology. R. Soc. Lond. Proc. Ser. A 1938, 165, 199–208. [Google Scholar] [CrossRef]
- Ray, S.; Mukhopadhyay, U.; Pratim Ghosh, P. Large Number Hypothesis: A Review. arXiv 2007, arXiv:0705.1836. [Google Scholar] [CrossRef]
- Huggett, N.; Matsubara, K.; Wüthrich, C. Beyond Spacetime: The Foundations of Quantum Gravity; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Espinosa, M. Visualizaciones de Redes Conceptuales de Teorías del Espacio-Tiempo y la Gravitación, Mediante el anáLisis de Conceptos Formales. Ph.D. Thesis, Universidad Autónoma Metropolitana, Posgrado en Ciencias Sociales y Humanidades, Mexico City, Mexico, 2022. [Google Scholar]
- Espinosa, M. The Space-Time Theories Exploratorium. In Scientific Legacy of Professor Zbigniew Oziewicz; Colín García, H.M., Guzmán, J.d.J.C., Kauffman, L.H., Makaruk, H., Eds.; World Scientific: Singapore, 2023; Chapter 10; pp. 225–245. [Google Scholar] [CrossRef]
- Méndez, D.; Casanueva, M. Representación de dominios teóricos mediante retículos: El dominio de la herencia biológica durante el periodo 1865–1902. Agora Papeles Filos. 2012, 31, 109–141. [Google Scholar] [CrossRef]
- Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Ganter, B.; Stumme, G.; Wille, R. Formal Concept Analysis: Foundations and Applications; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sheykin, A.; Manida, S. Universal Constants and Natural Systems of Units in a Spacetime of Arbitrary Dimension. Universe 2020, 6, 166. [Google Scholar] [CrossRef]
- Tonti, E. The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram; Modeling and Simulation in Science, Engineering and Technology; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bernal, T.; Capozziello, S.; Cristofano, G.; de Laurentis, M. Mond’s Acceleration Scale as a Fundamental Quantity. Mod. Phys. Lett. A 2011, 26, 2677–2687. [Google Scholar] [CrossRef]
- Hernandez, X. A Phase Space Diagram for Gravity. Entropy 2012, 14, 848–855. [Google Scholar] [CrossRef]
- Birkhoff, G. Lattice Theory; Number v. 25, pt. 2 in American Mathematical Society colloquium publications; American Mathematical Society: Providence, RI, USA, 1940. [Google Scholar]
- Kuznetsov, S.O.; Makhalova, T. On interestingness measures of formal concepts. arXiv 2016, arXiv:1611.02646. [Google Scholar] [CrossRef]
- Kuznetsov, S.; Makhalova, T. On interestingness measures of formal concepts. Inf. Sci. 2018, 442–443, 202–219. [Google Scholar] [CrossRef]
- Ganter, B.; Stumme, G. Methods and applications in computer science. Form. Concept Anal. 2002, 46, 1–117. [Google Scholar]
- Priss, U. Formal concept analysis in information science. Annu. Rev. Inf. Sci. Technol. 2007, 40, 521–543. [Google Scholar] [CrossRef]
- Ganter, B.; Obiedkov, S. Conceptual Exploration; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Singh, P.K.; Kumar, C.A.; Gani, A. A comprehensive survey on formal concept analysis, its research trends and applications. Int. J. Appl. Math. Comput. Sci. 2016, 26, 495–516. [Google Scholar] [CrossRef]
- Yevtushenko, S.A. System of data analysis “Concept Explorer”. In Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, Varna, Bulgaria, 20–23 September 2000; pp. 127–134. [Google Scholar]
- Moulines, C.U. Exploraciones Metacientíficas; Alianza Editorial: Madrid, Spain, 1982. [Google Scholar]
- Balzer, W.; Sneed, J.D.; Moulines, C.U. Structuralist Knowledge Representation: Paradigmatic Examples; Poznań studies in the philosophy of the sciences and the humanities; Rodopi: Bulgaria, Greece, 2000. [Google Scholar]
- Balzer, W.; Moulines, C.; Sneed, J.D. Una Arquitectonica Para la Ciencia: El Programa Estructuralista; Universidad Nacional de Quilmes: Bernal, Argentina, 2012. [Google Scholar]
- Abreu, C.; Lorenzano, P.; Moulines, C.U. Bibliography of Structuralism III (1995-2012, and Additions). Metatheoria–Rev. Filos. Hist. Cienc. 2013, 3, 1–36. [Google Scholar] [CrossRef]
- Bunge, M. Foundations of Physics; Springer Tracts in Natural Philosophy; Springer: New York, NY, USA, 1967. [Google Scholar]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Bekenstein, J.; Milgrom, M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286, 7–14. [Google Scholar] [CrossRef]
- Mendoza, S.; Hernandez, X.; Hidalgo, J.C.; Bernal, T. A natural approach to extended Newtonian gravity: Tests and predictions across astrophysical scales. Mon. Not. R. Astron. Soc. 2011, 411, 226–234. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Skordis, C.; Złośnik, T. New Relativistic Theory for Modified Newtonian Dynamics. Phys. Rev. Lett. 2021, 127, 161302. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, M. A modification of the Newtonian dynamics—Implications for galaxies. Astroph. J. 1983, 270, 371–389. [Google Scholar] [CrossRef]
- Milgrom, M. MOND—A Pedagogical Review. Acta Phys. Pol. B 2001, 32, 3613. [Google Scholar] [CrossRef]
- Barrientos, E.; Bernal, T.; Mendoza, S. Non-vacuum relativistic extensions of MOND using metric theories of gravity with curvature-matter couplings and their applications to the accelerated expansion of the universe without dark components. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150086. [Google Scholar] [CrossRef]
- Barrientos, E.; Mendoza, S.; Padilla, P. Extending Friedmann Equations Using Fractional Derivatives Using a Last Step Modification Technique: The Case of a Matter Dominated Accelerated Expanding Universe. Symmetry 2021, 13, 174. [Google Scholar] [CrossRef]
- Resnick, R.; Halliday, D. Física; Compañía Editorial Continental: Mexico City, Mexico, 1974. [Google Scholar]
- Pisanty, E. Unit Relations in the New SI. Wikipedia, CC BY-SA 4.0. 2019. Available online: https://en.m.wikipedia.org/wiki/File:UnitrelationsinthenewSI.svg (accessed on 1 March 2024).
- Lockwood, D.; Rowell, N. Quantifying our World. Phys. Can. 2016, 72, 193–196. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Aldama, M.; Mendoza, S. Multidimensional Representation of Semantic Relations between Physical Theories, Fundamental Constants and Units of Measurement with Formal Concept Analysis. Symmetry 2024, 16, 899. https://doi.org/10.3390/sym16070899
Espinosa-Aldama M, Mendoza S. Multidimensional Representation of Semantic Relations between Physical Theories, Fundamental Constants and Units of Measurement with Formal Concept Analysis. Symmetry. 2024; 16(7):899. https://doi.org/10.3390/sym16070899
Chicago/Turabian StyleEspinosa-Aldama, Mariana, and Sergio Mendoza. 2024. "Multidimensional Representation of Semantic Relations between Physical Theories, Fundamental Constants and Units of Measurement with Formal Concept Analysis" Symmetry 16, no. 7: 899. https://doi.org/10.3390/sym16070899
APA StyleEspinosa-Aldama, M., & Mendoza, S. (2024). Multidimensional Representation of Semantic Relations between Physical Theories, Fundamental Constants and Units of Measurement with Formal Concept Analysis. Symmetry, 16(7), 899. https://doi.org/10.3390/sym16070899