Global Models of Collapsing Scalar Field: Endstate
<p>The subset <math display="inline"><semantics> <mo>Ω</mo> </semantics></math> (<a href="#FD36-symmetry-16-00583" class="html-disp-formula">36</a>) in (<b>b</b>,<b>d</b>,<b>f</b>) for several choices ((<b>a</b>), (<b>c</b>), (<b>e</b>) respectively) of the potential <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math>. The orange region corresponds to the set where <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, see (<a href="#FD34-symmetry-16-00583" class="html-disp-formula">34</a>) and the ensuing discussion.</p> "> Figure 2
<p>The flow of the vector field (<a href="#FD40-symmetry-16-00583" class="html-disp-formula">40</a>) in Example 1 for two values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>. When <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>≥</mo> <mn>1</mn> </mrow> </semantics></math>, the point <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> (and <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> as well) becomes unstable equilibria.</p> "> Figure 3
<p>(<b>a</b>): If <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>a</mi> <mo stretchy="false">˙</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is unbounded, at the center of the model the horizon (blue line) forms at the same comoving time as the singularity (red line). (<b>b</b>): when <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>a</mi> <mo stretchy="false">˙</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is bounded in the approach to the singularity, one can choose a sufficiently small neighborhood of the center such that <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>></mo> <mn>2</mn> <mi>m</mi> </mrow> </semantics></math> and perform a junction of the interior (the green region) with an exterior spacetime.</p> "> Figure 4
<p><math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math> for several choices of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>, see Example 5. The constant <span class="html-italic">c</span> in (<a href="#FD67-symmetry-16-00583" class="html-disp-formula">67</a>) has been fine-tuned requiring the continuity of <math display="inline"><semantics> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Scalar Field Collapsing Model
- 1.
- eventually positive and eventually negative (resp. positive) for (resp.: );
- 2.
- the two limits and exist and are finite.
3. The Flat Case
- . If
- . Besides the situations already considered before, there are also the points with .
- , and the limit case at infinity when , hence ;
- , when ;
- .
- , with or and . The eigenvalues are 0 and , hence these points are unstable;
- and . We can limit to the two cases where w and s have the same sign since they are the physically relevant ones ( and have the same sign). Considering, for instance, , the hypothesis (17) made on f gives the two eigenvalues and . Therefore, is a sufficient condition for stability. The same argument applies to , where is needed to have a stable equilibrium point.
- and . Observe that, due to Assumption 1 made on , the constraint (32) implies . Considering the positive case , the two eigenvalues are given by and , then if the equilibrium is unstable. Similarly, if , then the point is unstable.
4. The Open Spatial Topology
- , where the limit cases are possible only when ;
- if ;
- ;
- if and is an equilibrium point, then by (41), we have , which implies . In this case, the linearized system is characterized by the following matrix:
- If , then we can reduce to study the system only with respect to . By (44), we have an equilibrium point if either or . Let us examine separately the two cases:
- –
- and : we have considerations analogous to the case where . Specifically, the physically relevant points and are stable if and , respectively. Moreover, the other two points of equilibrium, which are and , are always unstable.
- –
- and : in such points, (43) reads as follows:As a consequence, such points are of equilibrium if either or . If , then and the linearized system is given by the following matrix:
5. A Collapsing Global Model
5.1. Horizon Formation
6. Horizon Formation Genericity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christodoulou, D. The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 1991, 44, 339–373. [Google Scholar] [CrossRef]
- Christodoulou, D. Bounded variation solutions of the spherically symmetric einstein-scalar field equations. Commun. Pure Appl. Math. 1993, 46, 1131–1220. [Google Scholar] [CrossRef]
- Christodoulou, D. Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 1994, 140, 607–653. [Google Scholar] [CrossRef]
- Christodoulou, D. The Instability of Naked Singularities in the Gravitational Collapse of a Scalar Field. Ann. Math. 1999, 149, 183–217. [Google Scholar] [CrossRef]
- Dafermos, M. A Note on naked singularities and the collapse of selfgravitating Higgs fields. Adv. Theor. Math. Phys. 2005, 9, 575–591. [Google Scholar] [CrossRef]
- Foster, S. Scalar field cosmologies and the initial space-time singularity. Class. Quant. Grav. 1998, 15, 3485–3504. [Google Scholar] [CrossRef]
- Miritzis, J. Scalar field cosmologies with an arbitrary potential. Class. Quant. Grav. 2003, 20, 2981–2990. [Google Scholar] [CrossRef]
- Miritzis, J. Dynamical system approach to FRW models in higher order gravity theories. J. Math. Phys. 2003, 44, 3900–3910. [Google Scholar] [CrossRef]
- Miritzis, J. The Recollapse problem of closed FRW models in higher-order gravity theories. J. Math. Phys. 2005, 46, 082502. [Google Scholar] [CrossRef]
- Malafarina, D. Classical collapse to black holes and quantum bounces: A review. Universe 2017, 3, 48. [Google Scholar] [CrossRef]
- Tzanni, K.; Miritzis, J. Coupled quintessence with double exponential potentials. Phys. Rev. D 2014, 89, 103540. [Google Scholar] [CrossRef]
- Giambò, R.; Miritzis, J.; Tzanni, K. Negative potentials and collapsing universes. Class. Quant. Grav. 2015, 32, 035009. [Google Scholar] [CrossRef]
- Giambò, R.; Miritzis, J.; Tzanni, K. Negative potentials and collapsing universes II. Class. Quant. Grav. 2015, 32, 165017. [Google Scholar] [CrossRef]
- Goswami, R.; Joshi, P.S.; Singh, P. Quantum evaporation of a naked singularity. Phys. Rev. Lett. 2006, 96, 031302. [Google Scholar] [CrossRef] [PubMed]
- Baier, R.; Nishimura, H.; Stricker, S.A. Scalar field collapse with negative cosmological constant. Class. Quant. Grav. 2015, 32, 135021. [Google Scholar] [CrossRef]
- Mosani, K.; Dey, D.; Bhattacharya, K.; Joshi, P.S. Singularity resolution in gravitational collapse. Phys. Rev. D 2022, 105, 064048. [Google Scholar] [CrossRef]
- Guo, J.Q.; Zhang, L.; Chen, Y.; Joshi, P.S.; Zhang, H. Strength of the naked singularity in critical collapse. Eur. Phys. J. C 2020, 80, 924. [Google Scholar] [CrossRef]
- Giambò, R.; Giannoni, F.; Magli, G. Genericity of black hole formation in the gravitational collapse of homogeneous self-interacting scalar fields. J. Math. Phys. 2008, 49, 042504. [Google Scholar] [CrossRef]
- Giambò, R. Gravitational collapse of homogeneous perfect fluid in HOG theories. J. Math. Phys. 2009, 50, 012501. [Google Scholar] [CrossRef]
- Khalil, H. Nonlinear Systems; Pearson Education, Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Dumortier, F.; Llibre, J.; Artés, J.C. Qualitative Theory of Planar Differential Systems; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2. [Google Scholar]
- Wang, A.; Wu, Y. Generalized Vaidya solutions. Gen. Rel. Grav. 1999, 31, 107. [Google Scholar] [CrossRef]
- Giambò, R. Gravitational collapse of homogeneous scalar fields. Class. Quant. Grav. 2005, 22, 2295–2305. [Google Scholar] [CrossRef]
- Giambò, R. Gravitational collapse of a spherical scalar field. In New Frontiers in Gravitational Collapse and Spacetime Singularities; Malafarina, D., Joshi, P.S., Eds.; Springer Series in Astrophysics and Cosmology; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K. Arbitrary scalar field and quintessence cosmological models. Eur. Phys. J. C 2014, 74, 2784. [Google Scholar] [CrossRef]
- Leon, G.; Silva, F.O.F. Generalized scalar field cosmologies: Theorems on asymptotic behavior. Class. Quant. Grav. 2020, 37, 245005. [Google Scholar] [CrossRef]
- Leon, G.; Silva, F.O.F. Generalized scalar field cosmologies: A global dynamical systems formulation. Class. Quant. Grav. 2021, 38, 015004. [Google Scholar] [CrossRef]
- Tavakoli, Y.; Escamilla-Rivera, C.; Fabris, J.C. The final state of gravitational collapse in Eddington-inspired Born-Infeld theory. Annalen Phys. 2017, 529, 1600415. [Google Scholar] [CrossRef]
- Chakrabarti, S. Collapse of an axion scalar field. Eur. Phys. J. C 2021, 81, 124. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Mosani, K.; Odintsov, S.D.; Samanta, G.C. Gravitational collapse in General Relativity and in R2-gravity: A comparative study. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1950035. [Google Scholar] [CrossRef]
- Ziaie, A.H.; Moradpour, H.; Mohammadi Sabet, M. Non-singular collapse scenario from matter–curvature coupling. Eur. Phys. J. Plus 2021, 136, 1085. [Google Scholar] [CrossRef]
- Koutsoumbas, G.; Ntrekis, K.; Papantonopoulos, E.; Tsoukalas, M. Gravitational Collapse of a Homogeneous Scalar Field Coupled Kinematically to Einstein Tensor. Phys. Rev. D 2017, 95, 044009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, D.; Giambò, R. Global Models of Collapsing Scalar Field: Endstate. Symmetry 2024, 16, 583. https://doi.org/10.3390/sym16050583
Corona D, Giambò R. Global Models of Collapsing Scalar Field: Endstate. Symmetry. 2024; 16(5):583. https://doi.org/10.3390/sym16050583
Chicago/Turabian StyleCorona, Dario, and Roberto Giambò. 2024. "Global Models of Collapsing Scalar Field: Endstate" Symmetry 16, no. 5: 583. https://doi.org/10.3390/sym16050583