Topological Photonic Crystal in Microwave Region Based on Coupled Superconducting Resonators
<p>(<b>a</b>) A schematic diagram of the material; (<b>b</b>) a photograph of the circuit implementing the topologically non-trivial photonic crystal; (<b>c</b>) a circuit of ten indirectly coupled, topologically trivial resonators. The YBCO film has a conductivity of approximately <math display="inline"><semantics> <msup> <mn>10</mn> <mn>13</mn> </msup> </semantics></math> S/m and a thickness of 600 nm. The substrate is MgO with dimensions of 47.6 mm × 10 mm × 0.5 mm, and its relative permittivity is 9.74675. The depth of the air layer below the top cover is 5 mm. The dimensions in the circuit are as follows: <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2.56</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2.62</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4.08</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> mm, and <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.28</mn> </mrow> </semantics></math> mm. The number of turns of each spiral resonator is 5. The line width and line spacing are both 0.08 mm in the spiral resonators. (<b>d</b>) Circuit of ten indirectly coupled, topologically non-trivial resonators.</p> "> Figure 2
<p>(<b>a</b>) Calculated eigenfrequencies (black dots) and simulated intensity with loss (blue profile); (<b>b</b>) local intensity profiles of the bulk state in the pass band under a topologically trivial structure (calculation: f = 1307.65 MHz; simulation: f = 1307.73 MHz); (<b>c</b>) calculated eigenfrequencies (black dots) and simulated intensity with loss (blue profile); (<b>d</b>) simulation (blue line) and calculation (red line) of the local intensity distribution of the edge state in the presence of a topologically non-trivial structure (calculation: f = 1301.86 MHz; simulation: f = 1301.86 MHz).</p> "> Figure 3
<p>(<b>a</b>) The calculated eigenfrequencies (black dots), the simulated intensity with loss (blue line), and the measured intensity with loss (red line) in the presence of a topologically non-trivial structure. (<b>b</b>) Local intensity distribution of the edge state (measurement: f = 1301.86 MHz; simulation: f = 1301.86 MHz; calculation: f = 1301.86 MHz). (<b>c</b>) Local intensity profiles of the bulk state in the pass band (measurement: f = 1308.73 MHz; simulation: f = 1307.93 MHz; calculation: f = 1307.87 MHz). (<b>d</b>) Local intensity profiles of the bulk state in the pass band (measurement: f = 1310.74 MHz; simulation: f = 1310.18 MHz; calculation: f = 1310.04 MHz).</p> "> Figure 4
<p>The transmission characteristics of the first five resonators as functions of the frequency in the presence of a topologically non-trivial structure. The parameters used to calculate the transmission are as follows: <math display="inline"><semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>1302.66</mn> </mrow> </semantics></math> MHz, <math display="inline"><semantics> <msub> <mi>κ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>1.85</mn> </mrow> </semantics></math> MHz, <math display="inline"><semantics> <msub> <mi>κ</mi> <mn>2</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>7.35</mn> </mrow> </semantics></math> MHz, <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>0.0185</mn> </mrow> </semantics></math> MHz, <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>2</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>0.114</mn> </mrow> </semantics></math> MHz, and <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>0</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>0.082</mn> </mrow> </semantics></math> MHz.</p> ">
Abstract
:1. Introduction
2. Theory and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
YBCO | |
HTS | High-temperature superconducting |
SSH | Su–Schrieffer–Heeger |
Appendix A
Photonic Crystal | Phenomenon | Systems and Composition | Applications |
---|---|---|---|
Topological photonic crystal | Topological edge states [19,20,24,25,26,32] | Gyromagnetic photonic crystal [18,19] | Fabrication of high-efficiency devices [10,12,13,14,15,16,17,18,23,25,26,35,36,50,51] |
Antiscatter transmission [18,25,32] | Coupled resonators chain [23,24,25,26,42,52,53] | Ultra-high speed signal transmission [18,51] | |
Robustness [23,26,36,38,39,40] | Coupled spiral waveguides [24,32,33,34,35,36] | Optimization of device performance [18,25,26,35,36] | |
Nonlinear optical effects [9,10,45,50,51] | |||
Topological phase transitions [6,33,35] | |||
Microwave photonic crystals | Topological edge states [6,27,41,48,60] | Photon Weyl and Dirac system [6,21,28,38] | Antenna design [41,48,54,61,69] |
Robustness [6,27,30,37,41,48] | Coupled resonant microcavities [5,6,27,41,48,57,60,61,62,63,64] | Band-pass filter [54,55,56,69] | |
Broadband tetherable and anti-electromagnetic interference [55,56,69] | Plasma [27,30,37,58] | Topological photonics [5,6,29,30,31,37,38,41,48,60,61] | |
One-way scattering [27,48] | Microcavity polaritons [5,29,30,31] | Optical delay line [54,55,56,69] | |
Nonlinear optical effects [5,6] | |||
Photon Weyl and Dirac point [6,21,28,38,41] |
References
- Yan, Q.; Hu, X.; Fu, Y.; Lu, C.; Fan, C.; Liu, Q.; Feng, X.; Sun, Q.; Gong, Q. Quantum topological photonics. Adv. Opt. Mater. 2021, 9, 2001739. [Google Scholar] [CrossRef]
- Han, Y.; Fei, H.; Lin, H.; Zhang, Y.; Zhang, M.; Yang, Y. Design of broadband all-dielectric valley photonic crystals at telecommunication wavelength. Opt. Commun. 2021, 488, 126847. [Google Scholar] [CrossRef]
- Liu, N.; Wang, S.; Lv, J.; Lu, Y.; Zhang, J. Refractive index biosensor based on topological ring resonator. Opt. Commun. 2023, 541, 129542. [Google Scholar] [CrossRef]
- Gao, Y.F.; He, Y.H.; Maimaiti, A.; Jin, M.C.; He, Y.; Qi, X.F. Manipulation of coupling between topological edge state and corner state in photonic crystals. Opt. Laser Technol. 2022, 155, 108387. [Google Scholar] [CrossRef]
- Smirnova, D.; Leykam, D.; Chong, Y.; Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 2020, 7, 021306. [Google Scholar] [CrossRef]
- Kim, M.; Jacob, Z.; Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light. Sci. Appl. 2020, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ma, S.; Zhang, Q.; Zhang, L.; Yang, C.; You, O.; Gao, W.; Xiang, Y.; Cui, T.; Zhang, S. Octupole corner state in a three-dimensional topological circuit. Light. Sci. Appl. 2020, 9, 145. [Google Scholar] [CrossRef]
- Dutt, A.; Minkov, M.; Williamson, I.A.D.; Fan, S. Higher-order topological insulators in synthetic dimensions. Light. Sci. Appl. 2020, 9, 131. [Google Scholar] [CrossRef]
- Xia, S.; Jukić, D.; Wang, N.; Smirnova, D.; Smirnov, L.; Tang, L.; Song, D.; Szameit, A.; Leykam, D.; Xu, J.; et al. Nontrivial coupling of light into a defect: The interplay of nonlinearity and topology. Light. Sci. Appl. 2020, 9, 147. [Google Scholar] [CrossRef]
- Xue, H.; Yang, Y.; Zhang, B. Topological valley photonics: Physics and device applications. Adv. Photonics Res. 2021, 2, 2100013. [Google Scholar] [CrossRef]
- Veretenov, N.A.; Rosanov, N.N.; Fedorov, S.V. Laser solitons: Topological and quantum phenomena. Physics-Uspekhi 2022, 65, 131. [Google Scholar] [CrossRef]
- Noh, W.; Nasari, H.; Kim, H.M.; Le-Van, Q.; Jia, Z.; Huang, C.H.; Kanté, B. Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry. Opt. Lett. 2020, 45, 4108–4111. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Chattopadhyay, U.; Zhu, B.; Qiang, B.; Li, J.; Jin, Y.; Li, L.; Davies, A.G.; Linfield, E.H.; Zhang, B.; et al. Electrically pumped topological laser with valley edge modes. Nature 2020, 578, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, L.; Zhang, D.; Gao, S. Topological cavity laser with valley edge states. Opt. Express 2022, 30, 4965–4977. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Xia, S.; Zhang, Y.; Li, Y.; Song, D.; Liu, C.; Chen, Z. Nonlinear topological valley Hall edge states arising from type-II Dirac cones. Adv. Photonics 2021, 3, 056001. [Google Scholar] [CrossRef]
- Zhong, H.; Li, Y.; Song, D.; Kartashov, Y.V.; Zhang, Y.; Zhang, Y.; Chen, Z. Topological valley Hall edge state lasing. Laser Photonics Rev. 2020, 14, 2000001. [Google Scholar] [CrossRef]
- Gong, Y.; Wong, S.; Bennett, A.J.; Huffaker, D.L.; Oh, S.S. Topological insulator laser using valley-Hall photonic crystals. ACS Photonics 2020, 7, 2089–2097. [Google Scholar] [CrossRef]
- Tang, G.J.; He, X.T.; Shi, F.L.; Liu, J.W.; Chen, X.D.; Dong, J.W. Topological Photonic Crystals: Physics, Designs, and Applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Tan, D.T.H. Topological Silicon Photonics. Adv. Photonics Res. 2021, 2, 2100010. [Google Scholar] [CrossRef]
- Lindner, N.H.; Refael, G.; Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 2011, 7, 490–495. [Google Scholar] [CrossRef]
- Zhang, B.; Maeshima, N.; Hino, K.i. Edge states of Floquet–Dirac semimetal in a laser-driven semiconductor quantum-well. Sci. Rep. 2021, 11, 2952. [Google Scholar] [CrossRef] [PubMed]
- Giovenale, N.; Osenda, O. Characterization of helical states in semiconductor quantum wells using quantum information quantities. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 144, 115406. [Google Scholar] [CrossRef]
- Zhao, H.; Miao, P.; Teimourpour, M.H.; Malzard, S.; El-Ganainy, R.; Schomerus, H.; Feng, L. Topological hybrid silicon microlasers. Nat. Commun. 2018, 9, 981. [Google Scholar] [CrossRef]
- Parto, M.; Wittek, S.; Hodaei, H.; Harari, G.; Bandres, M.A.; Ren, J.; Rechtsman, M.C.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 2018, 120, 113901. [Google Scholar] [CrossRef] [PubMed]
- Harari, G.; Bandres, M.A.; Lumer, Y.; Rechtsman, M.C.; Chong, Y.D.; Khajavikhan, M.; Christodoulides, D.N.; Segev, M. Topological insulator laser: Theory. Science 2018, 359, eaar4003. [Google Scholar] [CrossRef] [PubMed]
- Bandres, M.A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Topological insulator laser: Experiments. Science 2018, 359, eaar4005. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Gao, Z.; Shi, X.; Yang, Z.; Lin, X.; Xu, H.; Joannopoulos, J.D.; Soljačić, M.; Chen, H.; Lu, L.; et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun. 2016, 7, 11619. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, R.; Gao, W.; Guo, Q.; Yang, B.; Hu, J.; Bi, Y.; Xiang, Y.; Liu, C.; Zhang, S. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science 2019, 363, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Solnyshkov, D.D.; Malpuech, G.; St-Jean, P.; Ravets, S.; Bloch, J.; Amo, A. Microcavity polaritons for topological photonics. arXiv 2020, arXiv:2011.03012. [Google Scholar] [CrossRef]
- Ghosh, S.; Su, R.; Zhao, J.; Fieramosca, A.; Wu, J.; Li, T.; Zhang, Q.; Li, F.; Chen, Z.; Liew, T.C.H.; et al. Microcavity exciton polaritons at room temperature. Photonics Insights 2022, 1, R04. [Google Scholar] [CrossRef]
- Rider, M.S.; Palmer, S.J.; Pocock, S.R.; Xiao, X.; Arroyo Huidobro, P.; Giannini, V. A perspective on topological nanophotonics: Current status and future challenges. J. Appl. Phys. 2019, 125, 120901. [Google Scholar] [CrossRef]
- Rechtsman, M.C.; Zeuner, J.M.; Plotnik, Y.; Lumer, Y.; Podolsky, D.; Dreisow, F.; Nolte, S.; Segev, M.; Szameit, A. Photonic Floquet topological insulators. Nature 2013, 496, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Zeuner, J.M.; Rechtsman, M.C.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Rudner, M.S.; Segev, M.; Szameit, A. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 2015, 115, 040402. [Google Scholar] [CrossRef] [PubMed]
- Weimann, S.; Kremer, M.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Makris, K.G.; Segev, M.; Rechtsman, M.C.; Szameit, A. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 2017, 16, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Qin, X.; Mei, F.; Zhong, H.; Kivshar, Y.S.; Lee, C. Topological phase transitions and Thouless pumping of light in photonic waveguide arrays. Laser Photonics Rev. 2016, 10, 995–1001. [Google Scholar] [CrossRef]
- Han, C.; Lee, M.; Callard, S.; Seassal, C.; Jeon, H. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light. Sci. Appl. 2019, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Pan, Y.; Wang, Q.; Li, T.; Zhu, S. Topologically protected interface mode in plasmonic waveguide arrays. Laser Photonics Rev. 2015, 9, 392–398. [Google Scholar] [CrossRef]
- Lan, Z.; Chen, M.L.; Gao, F.; Zhang, S.; Wei, E. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys. 2022, 9, 100076. [Google Scholar] [CrossRef]
- Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [Google Scholar] [CrossRef]
- Segev, M.; Bandres, M.A. Topological photonics: Where do we go from here? Nanophotonics 2020, 10, 425–434. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Hossein Mousavi, S.; Tse, W.K.; Kargarian, M.; MacDonald, A.H.; Shvets, G. Photonic topological insulators. Nat. Mater. 2013, 12, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829. [Google Scholar] [CrossRef]
- Kraus, Y.E.; Lahini, Y.; Ringel, Z.; Verbin, M.; Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 2012, 109, 106402. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, M.; Mittal, S.; Fan, J.; Migdall, A.; Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photonics 2013, 7, 1001–1005. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Hu, Z.; Bongiovanni, D. Sub-symmetry-protected topological states. Nat. Phys. 2023, 19, 992–998. [Google Scholar] [CrossRef]
- Zhang, W.-F.; Li, C.-Y.; Chen, X.-F.; Huang, C.-M.; Ye, F.-W. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Phys. Sin. 2017, 66, 220201. [Google Scholar] [CrossRef]
- Malkova, N.; Hromada, I.; Wang, X.; Bryant, G.; Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 2009, 34, 1633–1635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Guo, Z.; Ding, Y.; Sun, Y.; Li, Y.; Jiang, H.; Chen, H. Experimental demonstration of the robust edge states in a split-ring-resonator chain. Opt. Express 2018, 26, 12891–12902. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ren, J.; Guo, Z.; Zhu, W.; Long, Y.; Jiang, H.; Chen, H. Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B 2020, 101, 165427. [Google Scholar] [CrossRef]
- Barik, S.; Karasahin, A.; Flower, C.; Cai, T.; Miyake, H.; DeGottardi, W.; Hafezi, M.; Waks, E. A topological quantum optics interface. Science 2018, 359, 666–668. [Google Scholar] [CrossRef]
- Blanco-Redondo, A.; Bell, B.; Oren, D.; Eggleton, B.J.; Segev, M. Topological protection of biphoton states. Science 2018, 362, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Goldschmidt, E.A.; Hafezi, M. A topological source of quantum light. Nature 2018, 561, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lin, Q.; Xiao, M.; Fan, S. Synthetic dimension in photonics. Optica 2018, 5, 1396–1405. [Google Scholar] [CrossRef]
- Yao, J. Microwave photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Zhang, W.; Minasian, R.A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 2011, 23, 1775–1777. [Google Scholar] [CrossRef]
- Lloret, J.; Sancho, J.; Pu, M.; Gasulla, I.; Yvind, K.; Sales, S.; Capmany, J. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator. Opt. Express 2011, 19, 12402–12407. [Google Scholar] [CrossRef] [PubMed]
- Poli, C.; Bellec, M.; Kuhl, U.; Mortessagne, F.; Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 2015, 6, 6710. [Google Scholar] [CrossRef] [PubMed]
- Sinev, I.S.; Mukhin, I.S.; Slobozhanyuk, A.P.; Poddubny, A.N.; Miroshnichenko, A.E.; Samusev, A.K.; Kivshar, Y.S. Mapping plasmonic topological states at the nanoscale. Nanoscale 2015, 7, 11904–11908. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Song, W.; Chen, C.; Chen, T.; Ye, H.; Shen, X.; Cheng, Q.; Li, T. Phase transition of non-Hermitian topological edge states in microwave regime. Appl. Phys. Lett. 2020, 116, 211104. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, T.; Song, J.; Jiang, H.; Chen, H. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photonics Res. 2021, 9, 574–582. [Google Scholar] [CrossRef]
- Mayboroda, D.; Pogarsky, S. Influence of Microstrip Resonator Topology on Frequency and Energy Characteristcs. In Proceedings of the 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, 9–13 September 2019; pp. 1–4. [Google Scholar]
- Zheng, T.; Wei, B.; Lei, F.; Cao, B. Very large group delay in VHF band using coupled high temperature superconducting resonators. Photonics Res. 2021, 9, 1892–1897. [Google Scholar] [CrossRef]
- Zheng, T.; Huang, J.; Wang, P.; Jiang, L.; Wei, B. Electromagnetically induced transparency in indirectly coupled high-temperature superconducting resonators. Electron. Lett. 2023, 59, e13009. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, P.; Wei, B.; Lu, B.; Cao, B.; Lei, F. Three-pathway electromagnetically induced transparency and absorption based on coupled superconducting resonators. Phys. Rev. A 2023, 108, 053105. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Li, M.; Liu, Y.C.; Li, Y.; Sun, X.; Gong, Q. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 2010, 82, 065804. [Google Scholar] [CrossRef]
- Bellec, M.; Kuhl, U.; Montambaux, G.; Mortessagne, F. Tight-binding couplings in microwave artificial graphene. Phys. Rev. B 2013, 88, 115437. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, G.; Yang, Z.; Sheng, P.; Zhang, Z.; Chan, C.T. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 2015, 11, 240–244. [Google Scholar] [CrossRef]
- Mirza, J.; Kanwal, B.; Ghafoor, S. Microwave photonic notch filter based on polarisation multiplexing and cross gain modulation in a semiconductor optical amplifier. Electron. Lett. 2020, 56, 189–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, T.; Chang, X.; Huang, J.; Liu, Y.; Wei, J.; Guo, Q. Topological Photonic Crystal in Microwave Region Based on Coupled Superconducting Resonators. Symmetry 2024, 16, 453. https://doi.org/10.3390/sym16040453
Zheng T, Chang X, Huang J, Liu Y, Wei J, Guo Q. Topological Photonic Crystal in Microwave Region Based on Coupled Superconducting Resonators. Symmetry. 2024; 16(4):453. https://doi.org/10.3390/sym16040453
Chicago/Turabian StyleZheng, Tianning, Xiaoyang Chang, Juntian Huang, Yilun Liu, Jiaqi Wei, and Qi Guo. 2024. "Topological Photonic Crystal in Microwave Region Based on Coupled Superconducting Resonators" Symmetry 16, no. 4: 453. https://doi.org/10.3390/sym16040453
APA StyleZheng, T., Chang, X., Huang, J., Liu, Y., Wei, J., & Guo, Q. (2024). Topological Photonic Crystal in Microwave Region Based on Coupled Superconducting Resonators. Symmetry, 16(4), 453. https://doi.org/10.3390/sym16040453