The Single-Photon Scattering Properties of Three-Level Giant Atoms under the Interaction of Dissipation and Local Coupling
<p>Structure diagram of a three-level giant atom coupled at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>d</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>d</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, with separate local coupling phases <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> and coupling intensities <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>. The blue one-way arrows indicate that the photons may be transmitted or reflected when it is incident from the left.</p> "> Figure 2
<p>The effect of phase on the transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and phase difference <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>) conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>) and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>). Other parameters are <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The changing process of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> at different phases. (<b>a</b>,<b>d</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>) the conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>) and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>). Other parameters are <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>The effect of phase on the extreme values of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different phase differences <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math>. (<b>a</b>) The phase is set to be <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. Other parameters are <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The effect of phase difference on the transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and decay rate <math display="inline"><semantics> <mrow> <mi>η</mi> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>,<b>g</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>,<b>h</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>,<b>i</b>) the conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>), and <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math> in (<b>g</b>–<b>i</b>). Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>The changing process of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> at different phase differences. (<b>a</b>,<b>d</b>,<b>g</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>,<b>h</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>,<b>i</b>) the conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>), and <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math> in (<b>g</b>–<b>i</b>). Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>The effect of phase difference on the extreme values of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different decay rates <math display="inline"><semantics> <mrow> <mi>η</mi> </mrow> </semantics></math>. (<b>a</b>) The phase difference is set to be <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>3</mn> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>The effect of phase difference on the transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and dissipation rate <math display="inline"><semantics> <mrow> <mi>γ</mi> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>,<b>g</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>,<b>h</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>,<b>i</b>) the conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>), and <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math> in (<b>g</b>–<b>i</b>). Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>The change process of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> at different phase differences. (<b>a</b>,<b>d</b>,<b>g</b>) The transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>,<b>e</b>,<b>h</b>) the reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>,<b>i</b>) the conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>. We set the phase difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>d</b>–<b>f</b>), and <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math> in (<b>g</b>–<b>i</b>). Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>The effect of phase difference on the extreme values of transmission rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, reflection rate <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different dissipation rates <math display="inline"><semantics> <mrow> <mi>γ</mi> </mrow> </semantics></math>. (<b>a</b>) The phase difference is set to be <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>3</mn> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>(<b>a1</b>–<b>c1</b>) The effect of phase difference on conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and local coupling phases <math display="inline"><semantics> <mrow> <mi>θ</mi> </mrow> </semantics></math>. (<b>a2</b>–<b>c2</b>) The change process of conversion efficiency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> with different detuning <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> at different phase differences. We set the phase difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in (<b>a1</b>,<b>a2</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>b1</b>,<b>b2</b>), <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi>ϕ</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math> in (<b>c1</b>,<b>c2</b>). Other parameters are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ϕ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>/</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Model and the Hamiltonian
3. Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gustafsson, M.V.; Aref, T.; Kockum, A.F.; Ekström, M.K.; Johansson, G.; Delsing, P. Propagating phonons coupled to an artificial atom. Science 2014, 346, 207. [Google Scholar] [CrossRef]
- Kockum, A.F. Quantum optics with giant atoms–the first five years. Math. Ind. 2021, 33, 125–146. [Google Scholar]
- Kockum, A.F.; Delsing, P.; Johansson, G. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom. Phys. Rev. A 2014, 90, 013837. [Google Scholar] [CrossRef]
- Guo, L.; Grimsmo, A.L.; Kockum, A.F.; Pletyukhov, M.; Johansson, G. Giant acoustic atom: A single quantum system with a deterministic time delay. Phys. Rev. A 2017, 95, 053821. [Google Scholar] [CrossRef]
- Andersson, G.; Suri, B.; Guo, L.; Aref, T.; Delsing, P. Nonexponential decay of a giant artificial atom. Nat. Phys. 2019, 15, 1123. [Google Scholar] [CrossRef]
- Guo, L.; Kockum, A.F.; Marquardt, F.; Johansson, G. Oscillating bound states for a giant atom. Phys. Rev. Res. 2020, 2, 043014. [Google Scholar] [CrossRef]
- Kannan, B.; Ruckriegel, M.; Campbell, D.; Kockum, A.F.; Braumüller, J.; Kim, D.; Kjaergaard, M.; Krantz, P.; Melville, A.; Niedzielski, B.M.; et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 2020, 583, 775. [Google Scholar] [CrossRef] [PubMed]
- Vadiraj, A.M.; Ask, A.; McConkey, T.G.; Nsanzineza, I.C.; Sandbo Chang, W.; Kockum, A.F.; Wilson, C.M. Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics. Phys. Rev. A 2021, 103, 023710. [Google Scholar] [CrossRef]
- Longhi, S. Photonic simulation of giant atom decay. Opt. Lett. 2020, 45, 3017–3020. [Google Scholar] [CrossRef] [PubMed]
- González-Tudela, A.; Sánchez Muñoz, C.; Cirac, J.I. Engineering and Harnessing Giant Atoms in High-Dimensional Baths: A Proposal for Implementation with Cold Atoms. Phys. Rev. Lett. 2019, 122, 203603. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.Y.; Jia, W.Z. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation. Phys. Rev. A 2021, 104, 033710. [Google Scholar] [CrossRef]
- Kockum, A.F.; Johansson, G.; Nori, F. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics. Phys. Rev. Lett. 2018, 120, 140404. [Google Scholar] [CrossRef] [PubMed]
- Soro, A.; Kockum, A.F. Chiral quantum optics with giant atoms. arXiv 2022, arXiv:2106.11946v1. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Kockum, A.F.; Li, H.-R.; Nori, F. Tunable Chiral Bound States with Giant Atoms. Phys. Rev. Lett. 2021, 126, 043602. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-J.; Wang, Z.-H.; Liu, Y.-X. Boundary effect and dressed states of a giant atom in a topological waveguide. arXiv 2021, arXiv:2103.04542. [Google Scholar]
- Roy, D.; Wilson, C.M.; Firstenberg, O. Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 2017, 89, 021001. [Google Scholar] [CrossRef]
- Liao, Z.; Zeng, X.; Nha, H.; Zubairy, M.S. Photon transport in a one-dimensional nanophotonic waveguide QED system. Phys. Scr. 2016, 91, 063004. [Google Scholar] [CrossRef]
- Gu, X.; Kockum, A.F.; Miranowica, A.; Liu, Y.-X.; Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 2017, 718–719, 1–102. [Google Scholar]
- Bello, M.; Platero, G.; Cirac, J.I.; González-Tudela, A. Unconventional quantum optics in topological waveguide QED. Sci. Adv. 2019, 5, eaaw0297. [Google Scholar] [CrossRef]
- Fayard, N.; Henriet, L.; Asenjo-Garcia, A.; Chang, D.E. Many-body localization in waveguide quantum electrodynamics. Phys. Rev. Res. 2021, 3, 033233. [Google Scholar] [CrossRef]
- Astafiev, O.; Zagoskin, A.M.; Abdumalikov, A.A.; Yu, A.P.; Yamamoto, T.; Inomata, K.; Nakamura, Y.; Tsai, J.S. Resonance fluorescence of a single artificial atom. Science 2010, 327, 840–843. [Google Scholar] [CrossRef]
- Hoi, I.-C.; Wilson, C.M.; Johansson, G.; Palomaki, T.; Peropadre, B.; Delsing, P. Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 2011, 107, 073601. [Google Scholar] [CrossRef]
- Jia, W.Z.; Wang, Z.D. Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Phys. Rev. A 2013, 88, 063821. [Google Scholar] [CrossRef]
- Laakso, M.; Pletyukhov, M. Scattering of two photons from two distant qubits: Exact solution. Phys. Rev. Lett. 2014, 113, 183601. [Google Scholar] [CrossRef]
- Roy, D. Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency. Phys. Rev. Lett. 2011, 106, 053601. [Google Scholar] [CrossRef]
- Zhou, L.; Gong, Z.R.; Liu, Y.X.; Sun, C.P.; Nori, F. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 2008, 101, 100501. [Google Scholar] [CrossRef]
- Lund-Hansen, T.; Stobbe, S.; Julsgaard, B.; Thyrrestrup, H.; Sünner, T.; Kamp, M.; Forchel, A.; Lodahl, P. Experimental Realization of Highly Efficient Broad-band Coupling of Single Quantum Dots to a Photonic Crystal Waveguide. Phys. Rev. Lett. 2008, 101, 113903. [Google Scholar] [CrossRef]
- Arcari, M.; Söllner, I.; Javadi, A.; Lindskov Hansen, S.; Mahmoodian, S.; Liu, J.; Thyrrestrup, H.; Lee, E.H.; Song, J.D.; Stobbe, S.; et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 2014, 113, 093603. [Google Scholar] [CrossRef] [PubMed]
- Hoi, I.-C.; Kockum, A.F.; Tornberg, L.; Pourkabirian, A.; Johansson, G.; Delsing, P.; Wilson, C.M. Probing the quantum vacuum with an artificial atom in front of a mirror. Nat. Phys. 2015, 11, 1045. [Google Scholar] [CrossRef]
- Wen, P.Y.; Kockum, A.F.; Ian, H.; Chen, J.C.; Nori, F.; Hoi, I.-C. Reflective amplification without population inversion from a strongly driven superconducting qubit. Phys. Rev. Lett. 2018, 120, 063603. [Google Scholar] [CrossRef] [PubMed]
- Vetsch, E.; Reitz, D.; Sagué, G.; Schmidt, R.; Dawkins, S.T.; Rauschenbeutel, A. Optical Interface Created by Laser-Cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber. Phys. Rev. Lett. 2010, 104, 203603. [Google Scholar] [CrossRef]
- Corzo, N.V.; Gouraud, B.; Chandra, A.; Goban, A.; Sheremet, A.S.; Kupriyanov, D.V.; Laurat, J. Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide. Phys. Rev. Lett. 2016, 117, 133603. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Du, L.; Guo, L.Z.; Wang, Z.H.; Zhang, Y.; Li, Y.; Wu, J.-H. Nonreciprocal and chiral single-photon scattering for giant atoms. Physics 2022, 5, 215. [Google Scholar] [CrossRef]
- Du, L.; Li, Y. Single-photon frequency conversion via a giant Λ-type atom. Phys. Rev. A 2021, 104, 023712. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.-R. Chiral Quantum Network with Giant Atoms. arXiv 2021, arXiv:2106.13187. [Google Scholar] [CrossRef]
- Shen, J.-T.; Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 2009, 79, 023837. [Google Scholar]
- Bradford, M.; Shen, J.-T. Single-photon frequency conversion by exploiting quantum interference. Phys. Rev. A 2012, 85, 043814. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Wang, Z. Phase-modulated electromagnetically induced transparency in a giant-atom system within waveguide QED. arXiv 2021, arXiv:2102.03697. [Google Scholar]
- Bradford, M.; Obi, K.C.; Shen, J.-T. Efficient Single Photon Frequency Conversion Using a Sagnac Interferometer. Phys. Rev. Lett. 2012, 108, 103902. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.Y.; Zhan, Z.; Cui, H.Y.; Zhang, Y.L.; Jin, F.; Zhao, X.; Zhang, M.J.; Wang, Z.C.; Zhang, Q.M.; Watanabe, K.; et al. Observation of Rydberg moiré excitons. Science 2023, 380, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Zhang, W.; Cai, Q.; Xu, Y.; Yu, H.; Wang, X.; Fang, X.; Chen, Z.; Zhang, Y.; Ma, S.; et al. The Single-Photon Scattering Properties of Three-Level Giant Atoms under the Interaction of Dissipation and Local Coupling. Symmetry 2024, 16, 217. https://doi.org/10.3390/sym16020217
Lin L, Zhang W, Cai Q, Xu Y, Yu H, Wang X, Fang X, Chen Z, Zhang Y, Ma S, et al. The Single-Photon Scattering Properties of Three-Level Giant Atoms under the Interaction of Dissipation and Local Coupling. Symmetry. 2024; 16(2):217. https://doi.org/10.3390/sym16020217
Chicago/Turabian StyleLin, Liangwei, Weiwei Zhang, Qipeng Cai, Yiguang Xu, Haipeng Yu, Xiaosheng Wang, Xiaohong Fang, Zixuan Chen, Yicai Zhang, Shengcan Ma, and et al. 2024. "The Single-Photon Scattering Properties of Three-Level Giant Atoms under the Interaction of Dissipation and Local Coupling" Symmetry 16, no. 2: 217. https://doi.org/10.3390/sym16020217