Approximate N5LO Higgs Boson Decay Width Γ(H→γγ)
<p>The predicted values for the pQCD correction <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>|</mo> </mrow> <mi>PMC</mi> </msub> </mrow> </semantics></math> under the Padé approximation approach (PAA) and Bayesian approach (B.A.) at different orders, respectively. The blue rectangles together with the error bars are for B.A., the green error bars are brought by different types of PAAs, and the exact values of the <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <msub> <mrow> <mo>|</mo> </mrow> <mi>PMC</mi> </msub> </mrow> </semantics></math> at different orders, respectively.</p> "> Figure 2
<p>The fiducial cross section <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>fid</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>H</mi> <mo>→</mo> <mi>γ</mi> <mi>γ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>(</mo> <mi>H</mi> <mo>→</mo> <mi>γ</mi> <mi>γ</mi> <mo>)</mo> </mrow> </semantics></math> up to the N<sup>4</sup>LO level. The LHC−XS prediction, the ATLAS measurements [<a href="#B62-symmetry-16-00173" class="html-bibr">62</a>,<a href="#B65-symmetry-16-00173" class="html-bibr">65</a>,<a href="#B66-symmetry-16-00173" class="html-bibr">66</a>,<a href="#B67-symmetry-16-00173" class="html-bibr">67</a>], and the CMS measurement [<a href="#B68-symmetry-16-00173" class="html-bibr">68</a>,<a href="#B69-symmetry-16-00173" class="html-bibr">69</a>,<a href="#B70-symmetry-16-00173" class="html-bibr">70</a>] are presented as a comparison.</p> ">
Abstract
:1. Introduction
2. The N4LO-Level Prediction under the PMC and the Higher-Order Contribution Using a Bayesian Analysis
2.1. Basic Numerical Results and Discussions
2.2. The Fiducial Cross Section of
3. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H.E.; Nomerotski, A.; Perelstein, M.; et al. The International Linear Collider Technical Design Report—Volume 2: Physics. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Guimaraes da Costa, J.B.; Gao, Y.; Jin, S.; Qian, J.; Tully, C.G.; Young, C.; Wang, L.T.; Ruan, M.; Zhu, H.; Dong, M. CEPC Conceptual Design Report: Volume 2—Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef]
- Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Yu, Q.; Wu, X.G.; Wang, S.Q.; Huang, X.D.; Shen, J.M.; Zeng, J. Properties of the decay H→γγ using the approximate corrections and the principle of maximum conformality. Chin. Phys. C 2019, 43, 093102. [Google Scholar] [CrossRef]
- Ellis, J.R.; Gaillard, M.K.; Nanopoulos, D.V. A Phenomenological Profile of the Higgs Boson. Nucl. Phys. B 1976, 106, 292. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Voloshin, M.B.; Zakharov, V.I. Low-Energy Theorems for Higgs Boson Couplings to Photons. Sov. J. Nucl. Phys. 1979, 30, 711. [Google Scholar]
- Zheng, H.Q.; Wu, D.D. First order QCD corrections to the decay of the Higgs boson into two photons. Phys. Rev. D 1990, 42, 3760. [Google Scholar] [CrossRef]
- Dawson, S.; Kauffman, R.P. QCD corrections to H→γγ. Phys. Rev. D 1993, 47, 1264. [Google Scholar] [CrossRef]
- Djouadi, A.; Spira, M.; van der Bij, J.J.; Zerwas, P.M. QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range. Phys. Lett. B 1991, 257, 187. [Google Scholar] [CrossRef]
- Djouadi, A.; Spira, M.; Zerwas, P.M. Two photon decay widths of Higgs particles. Phys. Lett. B 1993, 311, 255. [Google Scholar] [CrossRef]
- Melnikov, K.; Yakovlev, O.I. Higgs → two photon decay: QCD radiative correction. Phys. Lett. B 1993, 312, 179. [Google Scholar] [CrossRef]
- Inoue, M.; Najima, R.; Oka, T.; Saito, J. QCD corrections to two photon decay of the Higgs boson and its reverse process. Mod. Phys. Lett. A 1994, 9, 1189. [Google Scholar] [CrossRef]
- Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, P.M. Higgs boson production at the LHC. Nucl. Phys. B 1995, 453, 17. [Google Scholar] [CrossRef]
- Fleischer, J.; Tarasov, O.V.; Tarasov, V.O. Analytical result for the two loop QCD correction to the decay H→2γ. Phys. Lett. B 2004, 584, 294. [Google Scholar] [CrossRef]
- Harlander, R.; Kant, P. Higgs production and decay: Analytic results at next-to-leading order QCD. J. High Energy Phys. 2005, 12, 015. [Google Scholar] [CrossRef]
- Anastasiou, C.; Buehler, S.; Herzog, F.; Lazopoulos, A. Inclusive Higgs boson cross-section for the LHC at 8 TeV. J. High Energy Phys. 2012, 2012, 4. [Google Scholar] [CrossRef]
- Maierhöfer, P.; Marquard, P. Complete three-loop QCD corrections to the decay H→γγ. Phys. Lett. B 2013, 721, 131. [Google Scholar] [CrossRef]
- Sturm, C. Higher order QCD results for the fermionic contributions of the Higgs-boson decay into two photons and the decoupling function for the renormalized fine-structure constant. Eur. Phys. J. C 2014, 74, 2978. [Google Scholar] [CrossRef]
- Marquard, P.; Smirnov, A.V.; Smirnov, V.A.; Steinhauser, M.; Wellmann, D. -on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group. Phys. Rev. D 2016, 94, 074025. [Google Scholar] [CrossRef]
- Davies, J.; Herren, F. Higgs boson decay into photons at four loops. Phys. Rev. D 2021, 104, 053010. [Google Scholar] [CrossRef]
- Actis, S.; Passarino, G.; Sturm, C.; Uccirati, S. NNLO Computational Techniques: The Cases H→γγ and H→gg. Nucl. Phys. B 2009, 811, 182. [Google Scholar] [CrossRef]
- Benedikt, M.; Mertens, V.; Cerutti, F.; Riegler, W.; Otto, T.; Tommasini, D.; Tavian, L.J.; Gutleber, J.; Zimmermann, F.; Mangano, M.; et al. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755. [Google Scholar]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343. [Google Scholar] [CrossRef]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346. [Google Scholar] [CrossRef]
- Caswell, W.E. Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order. Phys. Rev. Lett. 1974, 33, 244. [Google Scholar] [CrossRef]
- Jones, D.R.T. Two Loop Diagrams in Yang-Mills Theory. Nucl. Phys. B 1974, 75, 531. [Google Scholar] [CrossRef]
- Tarasov, O.V.; Vladimirov, A.A.; Zharkov, A.Y. The Gell-Mann-Low Function of QCD in the Three Loop Approximation. Phys. Lett. B 1980, 93, 429. [Google Scholar] [CrossRef]
- Larin, S.A.; Vermaseren, J.A.M. The Three loop QCD Beta function and anomalous dimensions. Phys. Lett. B 1993, 303, 334. [Google Scholar] [CrossRef]
- van Ritbergen, T.; Vermaseren, J.A.M.; Larin, S.A. The Four loop beta function in quantum chromodynamics. Phys. Lett. B 1997, 400, 379. [Google Scholar] [CrossRef]
- Chetyrkin, K.G. Four-loop renormalization of QCD: Full set of renormalization constants and anomalous dimensions. Nucl. Phys. B 2005, 710, 499. [Google Scholar] [CrossRef]
- Czakon, M. The Four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 2005, 710, 485. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H. Five-Loop Running of the QCD running coupling constant. Phys. Rev. Lett. 2017, 118, 082002. [Google Scholar] [CrossRef]
- Herzog, F.; Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.; Vogt, A. The five-loop beta function of Yang-Mills theory with fermions. J. High Energy Phys. 2017, 2017, 90. [Google Scholar] [CrossRef]
- Luthe, T.; Maier, A.; Marquard, P.; Schröder, Y. The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge. J. High Energy Phys. 2017, 2017, 166. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wu, X.G.; Zheng, X.C.; Shen, J.M.; Zhang, Q.L. The Higgs boson inclusive decay channels H→b and H→gg up to four-loop level. Eur. Phys. J. C 2014, 74, 2825. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: The QCD Coupling Constant at Four Loops. Phys. Rev. D 2012, 85, 034038. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Giustino, L.D. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality. Phys. Rev. D 2012, 86, 085026. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Application of the Principle of Maximum Conformality to Top-Pair Production. Phys. Rev. D 2012, 86, 014021. [Google Scholar] [CrossRef]
- Mojaza, M.; Brodsky, S.J.; Wu, X.G. Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD. Phys. Rev. Lett. 2013, 110, 192001. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Mojaza, M.; Wu, X.G. Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations. Phys. Rev. D 2014, 89, 014027. [Google Scholar] [CrossRef]
- Wu, X.G.; Brodsky, S.J.; Mojaza, M. The Renormalization Scale-Setting Problem in QCD. Prog. Part. Nucl. Phys. 2013, 72, 44. [Google Scholar] [CrossRef]
- Wu, X.G.; Ma, Y.; Wang, S.Q.; Fu, H.B.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting. Rept. Prog. Phys. 2015, 78, 126201. [Google Scholar] [CrossRef]
- Wu, X.G.; Shen, J.M.; Du, B.L.; Huang, X.D.; Wang, S.Q.; Brodsky, S.J. The QCD Renormalization Group Equation and the Elimination of Fixed-Order Scheme-and-Scale Ambiguities Using the Principle of Maximum Conformality. Prog. Part. Nucl. Phys. 2019, 108, 103706. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Low, F.E. Quantum electrodynamics at small distances. Phys. Rev. 1954, 95, 1300. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lepage, G.P.; Mackenzie, P.B. On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics. Phys. Rev. D 1983, 28, 228. [Google Scholar] [CrossRef]
- Shen, J.M.; Wu, X.G.; Du, B.L.; Brodsky, S.J. Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting. Phys. Rev. D 2017, 95, 094006. [Google Scholar] [CrossRef]
- Stueckelberg de Breidenbach, E.C.G.; Petermann, A. Normalization of constants in the quanta theory. Helv. Phys. Acta 1953, 26, 499. [Google Scholar]
- Peterman, A. Renormalization Group and the Deep Structure of the Proton. Phys. Rept. 1979, 53, 157. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wu, X.G.; Zheng, X.C.; Chen, G.; Shen, J.M. An analysis of H→γγ up to three-loop QCD corrections. J. Phys. G 2014, 41, 075010. [Google Scholar] [CrossRef]
- Cacciari, M.; Houdeau, N. Meaningful characterization of perturbative theoretical uncertainties. J. High Energy Phys. 2011, 2011, 39. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Cacciari, M.; Guffanti, A.; Jenniches, L. An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations. J. High Energy Phys. 2015, 2015, 133. [Google Scholar] [CrossRef]
- Bonvini, M. Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders. Eur. Phys. J. C 2020, 80, 989. [Google Scholar] [CrossRef]
- Duhr, C.; Huss, A.; Mazeliauskas, A.; Szafron, R. An analysis of Bayesian estimates for missing higher orders in perturbative calculations. J. High Energy Phys. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Shen, J.M.; Zhou, Z.J.; Wang, S.Q.; Yan, J.; Wu, Z.F.; Wu, X.G.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD Using the Principle of Maximum Conformality and Bayesian Analysis. Eur. Phys. J. C 2023, 83, 326. [Google Scholar] [CrossRef]
- Basdevant, J.L. The Pade approximation and its physical applications. Fortsch. Phys. 1972, 20, 283. [Google Scholar] [CrossRef]
- Samuel, M.A.; Li, G.; Steinfelds, E. Estimating perturbative coefficients in quantum field theory using Pade approximants. 2. Phys. Lett. B 1994, 323, 188. [Google Scholar] [CrossRef]
- Samuel, M.A.; Ellis, J.R.; Karliner, M. Comparison of the Pade approximation method to perturbative QCD calculations. Phys. Rev. Lett. 1995, 74, 4380. [Google Scholar] [CrossRef]
- Du, B.L.; Wu, X.G.; Shen, J.M.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD. Eur. Phys. J. C 2019, 79, 182. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the Higgs Boson Production cross Section at 7, 8 and 13 TeV Center-of-Mass Energies in the H→γγ Channel with the ATLAS Detector. ATLAS-CONF-2015-060. Available online: http://cds.cern.ch/record/2114826 (accessed on 1 September 2022).
- de Florian, D.; Fontes, D.; Quevillon, J.; Schumacher, M.; Llanes-Estrada, F.J.; Gritsan, A.V.; Vryonidou, E.; Signer, A.; de Castro, M.P.; Pagani, D.; et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. arXiv 2016, arXiv:1610.07922. [Google Scholar]
- Heinemeyer, S.; Mariotti, C.; Passarino, G.; Tanaka, R.; Andersen, J.R.; Artoisenet, P.; Bagnaschi, E.A.; Banfi, A.; Becher, T.; Bernlochner, F.U.; et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. arXiv 2013, arXiv:1307.1347. [Google Scholar]
- ATLAS. Measurements of Higgs Boson Properties in the Diphoton Decay Channel with 36.1 fb−1 pp Collision Data at the Center-of-Mass Energy of 13 TeV with the ATLAS Detector. ATLAS-CONF-2017-045. Available online: http://cds.cern.ch/record/2273852 (accessed on 1 September 2022).
- ATLAS. Combination of Searches for Heavy Resonances Using 139 fb−1 of proton–proton Collision Data at = 13 TeV with the ATLAS Detector. ATLAS-CONF-2022-028. Available online: http://cds.cern.ch/record/2809967 (accessed on 1 September 2022).
- Alves, L.; Lucio, F. Fiducial and differential cross-section measurements in the di-photon channel using full Run2 dataset at ATLAS. In Proceedings of the 41st International Conference on High Energy Physics (ICHEP 2022), Bologna, Italy, 6–13 July 2022; p. 1051. [Google Scholar]
- CMS. Measurement of Differential Fiducial Cross Sections for Higgs Boson Production in the Diphoton Decay Channel in pp Collisions at = 13 TeV. CMS-PAS-HIG-17-015. Available online: http://cds.cern.ch/record/2257530 (accessed on 1 September 2022).
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Ero, J.; et al. Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at = 8 TeV. Eur. Phys. J. C 2016, 76, 13. [Google Scholar] [CrossRef] [PubMed]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Escalante Del Valle, A.; Hussain, P.S.; Jeitler, M.; et al. Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at = 13 TeV. J. High Energy Phys. 2023, 2023, 091. [Google Scholar]
- Wang, S.Q.; Wu, X.G.; Brodsky, S.J.; Mojaza, M. Application of the Principle of Maximum Conformality to the Hadroproduction of the Higgs Boson at the LHC. Phys. Rev. D 2016, 94, 053003. [Google Scholar] [CrossRef]
CI | ||||
EC | − | |||
CI | ||||
EC | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.-F.; Yan, J.; Wu, Z.-F.; Wu, X.-G. Approximate N5LO Higgs Boson Decay Width Γ(H→γγ). Symmetry 2024, 16, 173. https://doi.org/10.3390/sym16020173
Luo Y-F, Yan J, Wu Z-F, Wu X-G. Approximate N5LO Higgs Boson Decay Width Γ(H→γγ). Symmetry. 2024; 16(2):173. https://doi.org/10.3390/sym16020173
Chicago/Turabian StyleLuo, Yu-Feng, Jiang Yan, Zhi-Fei Wu, and Xing-Gang Wu. 2024. "Approximate N5LO Higgs Boson Decay Width Γ(H→γγ)" Symmetry 16, no. 2: 173. https://doi.org/10.3390/sym16020173
APA StyleLuo, Y. -F., Yan, J., Wu, Z. -F., & Wu, X. -G. (2024). Approximate N5LO Higgs Boson Decay Width Γ(H→γγ). Symmetry, 16(2), 173. https://doi.org/10.3390/sym16020173