Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination
<p>Recovered <math display="inline"><semantics> <mi>μ</mi> </semantics></math> at Day 1, after 6 h (<b>left</b>), and at Day 2 after 8 h (<b>right</b>), Example 4.</p> "> Figure 2
<p>Recovered bee density at Day 1 after 2 h (<b>left</b>), Day 2 after 2 h (<b>right</b>), Example 4.</p> "> Figure 3
<p>Recovered bee density at Day 1 after 6 h (<b>left</b>), Day 2 after 6 h (<b>right</b>), Example 4.</p> "> Figure 4
<p>Recovered bee density at Day 1 after 8 h (<b>left</b>), Day 2 after 8 h (<b>right</b>), Example 4.</p> "> Figure 5
<p>Values of the norm (<a href="#FD29-symmetry-15-02099" class="html-disp-formula">29</a>) at each iteration at Day 1 after 6 h (<b>left</b>), Day 2 after 6 h (<b>right</b>), Example 4.</p> ">
Abstract
:1. Introduction
2. Model Problem
3. The Inverse Problem
4. Iterative Method for Solving a 1D Inverse Problem
4.1. Discrete Schemes
- The implicit backward Euler scheme: we find , such that
- The Crank–Nicolson scheme. Now, , is defined by
- The Saulyev-type alternating direction explicit (ADE) scheme. For the approximation, we use Saulyev’s first- and second-kind formula in order to obtain an unconditional stable numerical scheme, which can be realized in an explicit manner.
4.2. Iterative Procedure
- (IMIS-1D) Iteration method based on the implicit backward Euler scheme (15):
- (IMCNS-1D) Iteration method based on the Crank–Nicolson scheme (16):
- (IMBCS-1D) Iteration method based on the Barakat and Clark scheme obtained by averaging the solution of the first- and second-kind Saulyev’s scheme (17). We suppose that in (17) is known. Then, the first-kind approximation is explicit if the computations are performed from the left boundary to the right. Analogically, in a symmetric way, the same is performed for the second-kind approximation. The discretization is realized in an explicit manner if we compute the solution from the right to the left boundary. Therefore, taking to be known from previous iteration, we obtain the following iteration process based on the explicit schemes:
5. Iterative Method for Solving a 2D Inverse Problem
5.1. Discrete Schemes
- The implicit backward Euler scheme: we find , , such that
- The Crank–Nicolson scheme. We find , , solving the system
- The ADE approximation, using the averaging of Saulyev’s first- and second-kind formulae. In discrete scheme (23), we replace by and , where
5.2. Iterative Method
- (IMIS-2D) The iteration method based on the implicit backward Euler scheme (23):
- (IMCNS-2D) The iteration method based on the Crank–Nicolson scheme (24):
- (IMBCS-2D) The iteration method obtained by averaging the solution of the first- and the second-kind Saulyev’s scheme (25). Taking to be known from previous iteration, the first approximation is explicit if the computations are performed passing the nodes from the bottom boundary to the top and from the left boundary to the right. Similarly, the second-kind approximation is performed in an explicit manner if we compute the solution from the upper to the bottom boundary and from the right to the left boundary. Thus, we obtain the following iteration process based on the explicit schemes:
6. Numerical Tests
- -
- Approximately 25% of the bees in the colony are forager;
- -
- The colony’s bee population ranges from 20,000 to 60,000 individuals;
- -
- The foraging domain with rectangular symmetry measures 2 km by 2 km and is represented as [0, 2] × [0, 2];
- -
- The beehive is positioned in the center (1.0 km, 1.0 km) of the terrain;
- -
- The diffusion rate is 0.1 km2/day;
- -
- Forager bees tend to stay away from the boundaries of this area;
- -
- The initial state at the beehive is , where = 10,000 and represents a symmetric Gaussian density function (1), centered at with standard deviation 1.5812 × 10−4;
- -
- Mortality rate , maximal production parameter 2421.13, sigmoidal Hill production parameter 7173.56, stable and unstable uncontaminated equilibrium population size , 7000, respectively;
- -
- In the case , , at the sunrise of the days 1,2,…, the density and the total number of the forager bees are represented by [13]
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagheri, S.; Mirzaie, M. A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure. PLoS ONE 2019, 14, e0225632. [Google Scholar] [CrossRef]
- Chen, J.; DeGrandi-Hoffman, G.; Ratti, V.; Kang, Y. Review on mathematical modeling of honeybee population dynamics. J. Math. Biosci. Eng. 2021, 18, 9606–9650. [Google Scholar] [CrossRef]
- Van Dooremalen, C.; Gerritsen, L.; Cornelissen, B.; van der Steen, J.J.; van Langevelde, F.; Blacquiere, T. Winter survival of individual honey bees and honey bee colonies depends on level of varroa destructor infestation. PLoS ONE 2012, 7, e36285. [Google Scholar] [CrossRef]
- Fisher, A., II; DeGrandi-Hoffman, G.; Smith, B.H.; Johnson, M.; Kaftanoglu, O.; Cogley, T.; Fewell, J.H.; Harrison, J.F. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (apis mellifera). Environ. Pollut. 2021, 269, 115964. [Google Scholar] [CrossRef]
- Genersch, E. American foulbrood in honeybees and its causative agent, paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef]
- Laomettachit, T.; Liangruksa, M.; Termsaithong, T.; Tangthanawatsakul, A.; Duangphakdee, O. A model of infection in honeybee colonies with social immunity. PLoS ONE 2021, 16, e0247294. [Google Scholar] [CrossRef]
- Mayack, C.; Naug, D. Energetic stress in the honeybee apis mellifera from nosema ceranae infection. J. Invertebr. Pathol. 2009, 100, 185–188. [Google Scholar] [CrossRef]
- Paris, L.; El Alaoui, H.; Delbac, F.; Diogon, M. Effects of the gut parasite nosema ceranae on honey bee physiology and behavior. Curr. Opin. Insect Sci. 2018, 26, 149–154. [Google Scholar] [CrossRef]
- Smith, K.M.; Loh, E.H.; Rostal, M.K.; Zambrana-Torrelio, C.M.; Mendiola, L.; Daszak, P. Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. Ecohealth 2013, 10, 434–445. [Google Scholar] [CrossRef]
- Williams, B.A. Unique physiology of host-parasite interactions in microsporidia infections. Cell. Microbiol. 2009, 11, 1551–1560. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Roth, S.A.; Loper, G.; Erickson, E., Jr. Beepop: A honeybee population dynamics simulation model. Ecol. Modell. 1989, 45, 133–150. [Google Scholar] [CrossRef]
- Becher, M.A.; Osborne, J.L.; Thorbek, P.; Kennedy, P.J.; Grimm, V. Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 2013, 50, 868–880. [Google Scholar] [CrossRef]
- Magal, P.; Webb, G.F. A spatial model of honeybee colony collapse due to pesticide contamination of foraging bees. J. Math. Biol. 2020, 80, 2363–2393. [Google Scholar] [CrossRef]
- Bastaansen, R.; Doelman, A.; van Langevede, F.; Rottschafer, V. Modeling honey bee colonies in winter using a Keller-Segel model with a sign-changing chemotectic coefficient. SIAM J. Appl. Math. 2020, 80, 839–863. [Google Scholar] [CrossRef]
- Watmough, J.; Camazine, S. Self-organized thermoregulation of honeybee clusters. J. Theor. Biol. 1995, 176, 391–402. [Google Scholar] [CrossRef]
- Kribs-Zaleta, C.M.; Mitchell, C. Modeling colony collapse disorder in honeybees as a contagion. Math. Biosci. Engn. 2014, 11, 1275–1294. [Google Scholar] [CrossRef]
- Romero-Leiton, J.P.; Gutierrez, A.; Benavides, I.F.; Molina, O.E.; Pulgarin, A. An approach to the modeling of honey bee colonies. Web Ecol. 2022, 22, 7–19. [Google Scholar] [CrossRef]
- Atanasov, A.Z.; Koleva, M.N.; Vulkov, L.G. Numerical analysis of thermoregulation in honey bee colonies in winter based on sign-changing chemotactic coefficient model. In International Conference on New Trends in the Applications of Differential Equations in Sciences; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2023; Volume 4122, pp. 69–279. [Google Scholar]
- Chavent, G. Nonlinear Least Squares Problems: Theoretical Foundation and Step-by Guide for Applications; Springer: Cham, Switzerland, 2009. [Google Scholar]
- Hasanov, A.H.; Romanov, V.G. Introduction to Inverse Problems for Differential Equations, 1st ed.; Springer: Cham, Switzerland, 2017; 261p. [Google Scholar]
- Isakov, V. Inverse Problems for Partial Differential Equations, 3rd ed.; Springer: Cham, Switzerland, 2017; p. 406. [Google Scholar]
- Ivanov, V.K.; Vasin, V.V.; Tanana, V.P. Theory of Linear Ill-Posed Problems and Its Approximations; Walter de Gruyter: Nauka, Moscow, 1978. (In Russian) [Google Scholar]
- Kabanikhin, S.I. Inverse and Ill-Posed Problems; DeGruyer: Berlin, Germany, 2011. [Google Scholar]
- Lesnic, D. Inverse Problems with Applications in Science and Engineering; CRC Press: Abingdon, UK, 2021; p. 349. [Google Scholar]
- Prilepko, A.I.; Orlovsky, D.G.; Vasin, I.A. Methods for Solving Inverse Problems in Mathematical Physics; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Prilepko, A.I.; Kostin, A.B.; Solov’ev, V.V. Inverse source and coefficient problems for elliptic and parabolic equations in Hölder and Sobolev spaces. J. Math. Sci. 2019, 237, 576–594. [Google Scholar] [CrossRef]
- Romanov, V.G.; Hasanov, A.H. Uniquiness and stability analysis of final data inverse source problems for evolution equations. J. Inverse Ill-Posed Probl. 2022, 30, 425–446. [Google Scholar] [CrossRef]
- Cao, K.; Lesnic, D. Reconstruction of the perfusion coefficient from temperature measurements using the conjugate gradient method. Int. J. Comput. Math. 2018, 95, 797–814. [Google Scholar] [CrossRef]
- Atanasov, A.; Georgiev, S.; Vulkov, L. Reconstruction analysis of honeybee colony collapse disorder modeling. Optim. Eng. 2021, 22, 2481–2503. [Google Scholar] [CrossRef]
- Atanasov, A.Z.; Georgiev, S.G.; Vulkov, L.G. Parameter Estimation Analysis in a Model of Honey Production. Axioms 2023, 12, 214. [Google Scholar] [CrossRef]
- Atanasov, A.Z.; Koleva, M.N.; Vulkov, L.G. Numerical optimization identification of a Keller-Segel model for thermoregulation in honey bee colonies in winter. Model. Dev. Intell. Syst. Commun. Comput. Inf. Sci. 2023, 1761, 279–293. [Google Scholar]
- Atanasov, A.Z.; Koleva, M.N.; Vulkov, L.G. Parameter estimation inspired by temperature measurements for a chemotactic model of honeybee thermoregulation. In International Conference on Numerical Methods and Applications; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 13858, pp. 36–47. [Google Scholar]
- Koleva, M.; Vulkov, L. Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination. J. Phys. Conf. Proc. 2023. accepted. [Google Scholar]
- Martin-Vaquero, J.; Sajvicius, S. The two level finite difference scheme for the heat equation with nonlocal initial condition. Appl. Math. Comput. 2019, 342, 160–177. [Google Scholar] [CrossRef]
- Cong, C.; Li, D.; Li, L.; Zhao, D. Crank-Nicolson compact difference scheme for a class of nonlocal nonlinear parabolic problems. Comput. Math. Appl. 2023, 132, 1–17. [Google Scholar]
- Dehghan, M. Numerical schemes for one-dimensional parabolic equations with nonstandard initial condition. Appl. Math. Comput. 2004, 147, 321–331. [Google Scholar] [CrossRef]
- Dehghan, M. Implicit collocation technique for heat equation with non-classic initial condition. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 461–466. [Google Scholar] [CrossRef]
- Lin, Y. Analytical and numerical solutions for a class nonlocal nonlinear parabolic differential equations. SIAM J. Math. Anal. 1994, 25, 1577–1594. [Google Scholar] [CrossRef]
- Lin, Y. Finite-difference solutions for parabolic equations with time weighting initial conditions. Appl. Math. Comput. 1994, 65, 49–61. [Google Scholar] [CrossRef]
- Magal, P.; Webb, G.F.; Wu, Y. Environmental model of honey bee colony collapse due to pesticide contamination. Bull. Math. Biol. 2019, 81, 4908–4931. [Google Scholar] [CrossRef] [PubMed]
- Ratti, V.; Kevan, P.G.; Eberl, H.J. A mathematical model of forager loss in honeybee colonies infested with Varroa destructor and accute bee paralysis virus. Bull. Math. Biol. 2017, 79, 1218–1253. [Google Scholar] [CrossRef] [PubMed]
- Il’in, A.M. Differencing Scheme for a differential equation with a small parameter affecting the highest derivative. Mat. Zametki 1969, 6, 237–248. [Google Scholar] [CrossRef]
- Dehghan, M. Three-level techniques for one-dimensional parabolic equation with nonlinear initial condition. Appl. Math. Comput. 2004, 151, 567–579. [Google Scholar] [CrossRef]
- Askar, A.H.; Omle, I.; Kovács, E.; Majár, J. Testing some different implementations of heat convection and radiation in the Leapfrog-Hopscotch algorithm. Algorithms 2022, 15, 400. [Google Scholar] [CrossRef]
- Jalghaf, H.K.; Kovács, E.; Majár, J.; Nagy, Á.; Askar, A.H. Explicit stable finite difference methods for diffusion-reaction type equations. Mathematics 2021, 9, 3308. [Google Scholar] [CrossRef]
- Nagy, Á.; Omle, I.; Kareem, H.; Kovacs, E.; Barna, I.F.; Bognar, G. Stable, Explicit, Leapfrog-Hopscotch Algorithms for the Diffusion Equation. Computation 2021, 9, 92. [Google Scholar] [CrossRef]
- Saleh, M.; Kovács, E.; Barna, I.F.; Mátyás, L. New analytical results and comparison of 14 numerical schemes for the diffusion equation with space-dependent diffusion coefficient. Mathematics 2022, 10, 2813. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems in Mathematical Physics; de Gruyter: Berlin, Germany, 2007; 438p. [Google Scholar]
I | ||||||||
---|---|---|---|---|---|---|---|---|
20 | 2.500000 × 10−3 | 6.8620 × 10−4 | 4.8594 × 10−4 | 1.9222 × 10−3 | 4 | |||
40 | 6.250000 × 10−4 | 1.7141 × 10−4 | 2.0012 | 1.2139 × 10−4 | 2.0012 | 4.8026 × 10−4 | 2.0009 | 4 |
80 | 1.562500 × 10−4 | 4.2850 × 10−5 | 2.0001 | 3.0340 × 10−5 | 2.0002 | 1.2006 × 10−4 | 2.0002 | 4 |
160 | 3.906250 × 10−5 | 1.0713 × 10−5 | 1.9999 | 7.5846 × 10−6 | 2.0001 | 3.0010 × 10−5 | 2.0001 | 4 |
320 | 9.765625 × 10−6 | 2.6782 × 10−6 | 2.0001 | 1.8961 × 10−6 | 2.0001 | 7.5030 × 10−6 | 2.0000 | 4 |
I | |||||||
---|---|---|---|---|---|---|---|
20 | 5.4756 × 10−4 | 3.8788 × 10−4 | 1.5432 × 10−3 | 6 | |||
40 | 1.3681 × 10−4 | 2.0009 | 9.6909 × 10−5 | 2.0009 | 3.8567 × 10−4 | 2.0005 | 5 |
80 | 3.4207 × 10−5 | 1.9997 | 2.4223 × 10−5 | 2.0002 | 9.6408 × 10−5 | 2.0001 | 5 |
160 | 8.5516 × 10−6 | 2.0000 | 6.0555 × 10−6 | 2.0001 | 2.4100 × 10−5 | 2.0001 | 4 |
320 | 2.1378 × 10−6 | 2.0000 | 1.5138 × 10−6 | 2.0001 | 6.0229 × 10−6 | 2.0005 | 4 |
I | |||||||
---|---|---|---|---|---|---|---|
20 | 1.5768 × 10−3 | 1.0677 × 10−3 | 4.2919 × 10−3 | 4 | |||
40 | 4.3687 × 10−4 | 1.8517 | 3.0230 × 10−4 | 1.8204 | 1.1912 × 10−3 | 1.8493 | 4 |
80 | 1.1413 × 10−4 | 1.9366 | 7.98838 × 10−5 | 1.9200 | 3.1212 × 10−4 | 1.9322 | 4 |
160 | 2.9114 × 10−5 | 1.9708 | 2.0494 × 10−5 | 1.9627 | 7.9964 × 10−5 | 1.9647 | 4 |
320 | 7.3485 × 10−6 | 1.9862 | 5.1876 × 10−6 | 1.9821 | 2.0279 × 10−5 | 1.9794 | 4 |
I | |||||||||
---|---|---|---|---|---|---|---|---|---|
20 | 5.9575 × 10−4 | 2.9777 × 10−4 | 9.9173 × 10−4 | 9.3245 × 10−4 | 5 | ||||
40 | 1.4881 × 10−4 | 2.0012 | 7.4380 × 10−5 | 2.0012 | 2.4773 × 10−4 | 2.0011 | 2.3904 × 10−4 | 1.9638 | 5 |
80 | 3.7195 × 10−5 | 2.0003 | 1.8591 × 10−5 | 2.0003 | 6.1904 × 10−5 | 2.0007 | 6.0498 × 10−5 | 1.9823 | 5 |
160 | 9.2975 × 10−6 | 2.0002 | 4.6404 × 10−6 | 2.0002 | 1.5472 × 10−5 | 2.0004 | 1.5192 × 10−5 | 1.9936 | 5 |
320 | 2.3242 × 10−6 | 2.0001 | 1.1601 × 10−6 | 2.0000 | 3.8674 × 10−6 | 2.0002 | 3.8038 × 10−6 | 1.9978 | 5 |
I | |||||||||
---|---|---|---|---|---|---|---|---|---|
20 | 5.6981 × 10−4 | 2.8480 × 10−4 | 9.4954 × 10−4 | 8.9176 × 10−4 | 5 | ||||
40 | 1.4234 × 10−4 | 2.0012 | 7.1144 × 10−5 | 2.0012 | 2.3712 × 10−4 | 2.0016 | 2.2863 × 10−4 | 1.9636 | 5 |
80 | 3.5577 × 10−5 | 2.0003 | 1.7782 × 10−5 | 2.0003 | 5.9261 × 10−5 | 2.0005 | 5.7880 × 10−5 | 1.9819 | 5 |
160 | 8.8939 × 10−6 | 2.0001 | 4.4454 × 10−6 | 2.0001 | 1.4814 × 10−5 | 2.0002 | 1.4561 × 10−5 | 1.9910 | 5 |
320 | 2.2236 × 10−6 | 2.0000 | 1.1114 × 10−6 | 2.0000 | 3.7034 × 10−6 | 2.0000 | 3.6511 × 10−6 | 1.9957 | 5 |
I | |||||||||
---|---|---|---|---|---|---|---|---|---|
20 | 1.1899 × 10−3 | 5.7278 × 10−4 | 2.6630 × 10−3 | 1.6889 × 10−3 | 5 | ||||
40 | 3.1606 × 10−4 | 1.9126 | 1.5524 × 10−4 | 1.8835 | 8.9879 × 10−4 | 1.5670 | 4.8498 × 10−4 | 1.8001 | 5 |
80 | 8.0990 × 10−5 | 1.9644 | 4.0237 × 10−5 | 1.9479 | 2.8785 × 10−4 | 1.6426 | 1.3132 × 10−4 | 1.8849 | 5 |
160 | 2.0468 × 10−5 | 1.9844 | 1.0228 × 10−5 | 1.9760 | 7.9171 × 10−5 | 1.8623 | 3.4373 × 10−5 | 1.9337 | 5 |
320 | 5.1263 × 10−6 | 1.9974 | 2.5777 × 10−6 | 1.9884 | 2.0558 × 10−5 | 1.9453 | 8.6548 × 10−6 | 1.9897 | 5 |
Method | Reach Accuracy | |||||
---|---|---|---|---|---|---|
0.002 | 0.01 | IMIS-2D | 6.3931 × 10−4 | 2.9009 × 10−4 | 4 | yes |
IMCNS-2D | fails | fails | no | |||
IMBCS-2D | 3.0327 × 10−1 | 1.5163 × 10−1 | 2 | no | ||
0.002 | 0.005 | IMIS-2D | 6.3919 × 10−4 | 2.9014 × 10−4 | 4 | yes |
IMCNS-2D | 2.6857 × 10−2 | 9.7986 × 10−3 | 4 | yes | ||
IMBCS-2D | 3.0327 × 10−1 | 1.5473 × 10−1 | 2 | no | ||
0.002 | 0.001 | IMIS-2D | 6.3909 × 10−4 | 2.9020 × 10−4 | 4 | yes |
IMCNS-2D | 6.3907 × 10−4 | 2.9022 × 10−4 | 4 | yes | ||
IMBCS-2D | 8.7514 × 10−4 | 3.4776 × 10−4 | 4 | yes | ||
0.01 | 0.001 | IMIS-2D | 3.8821 × 10−3 | 1.4497 × 10−3 | 4 | yes |
IMCNS-2D | fails | fails | no | |||
IMBCS-2D | fails | fails | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasov, A.Z.; Koleva, M.N.; Vulkov, L.G. Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination. Symmetry 2023, 15, 2099. https://doi.org/10.3390/sym15122099
Atanasov AZ, Koleva MN, Vulkov LG. Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination. Symmetry. 2023; 15(12):2099. https://doi.org/10.3390/sym15122099
Chicago/Turabian StyleAtanasov, Atanas Z., Miglena N. Koleva, and Lubin G. Vulkov. 2023. "Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination" Symmetry 15, no. 12: 2099. https://doi.org/10.3390/sym15122099
APA StyleAtanasov, A. Z., Koleva, M. N., & Vulkov, L. G. (2023). Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination. Symmetry, 15(12), 2099. https://doi.org/10.3390/sym15122099