Frequency Shift of Photons in the Spacetime of Deformed RN BH
<p>The variation of the lapse function with respect to the radial distance around the deformed RN BH. In the figure, <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> is given as <math display="inline"><semantics> <mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. In the left panel, the deformation parameter is fixed as <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, and the different curves are responsible for the selected values of the BH charge. In the right panel, the BH charge is fixed as <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>/</mo> <mi>M</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and the different curves are responsible for the selected values of the deformation parameter.</p> "> Figure 2
<p>Variation of temperature with the horizon radius for the different values of parameter <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>/</mo> <mi>M</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Variation of the Gibbs free energy with the horizon radius for different values of parameter <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>/</mo> <mi>M</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>The influence of the electric charge (<b>left</b>) and the deformation parameter (<b>right</b>) on the radial behavior of the effective potential for photons in the vicinity of a deformed RN black hole is demonstrated.</p> "> Figure 5
<p>The variation of the photon sphere radius with respect to the spacetime parameters <span class="html-italic">Q</span> and <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> is depicted (solid lines). The solid lines in the figure represent the event horizon radius of a black hole. Subfigure (<b>a</b>) shows that increase of the electric charge reduces the photon sphere radius and the event horizon radius. Subfigure (<b>b</b>) reveals that increase of the deformation parameter affects the photon sphere radius only not changing event horizon radius. Further information can be found in the main text.</p> "> Figure 6
<p>Variation of the redshift of photons with radial coordinates for different values of the electric charge (<b>a</b>) and deformation parameter (<b>b</b>) of RN BH.</p> "> Figure 7
<p>The relationship between the redshift of photons and the radial coordinate, as well as the spacetime parameters of the deformed RN BH.</p> ">
Abstract
:1. Introduction
2. Deformed Reissner–Nordström Black Hole Solution
Thermodynamics
3. Photon Motion
4. Gravitational Redshift of Photons for Circularly Orbiting Detector
5. Radially Moving Detector and the Hubble Law
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, W.T. Solar-system tests of the relativistic gravity. Int. J. Mod. Phys. D 2016, 25, 1630003. [Google Scholar] [CrossRef]
- Treschman, K. Recent astronomical tests of general relativity. Int. J. Phys. Sci. 2015, 10, 90–105. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101, Erratum in Phys. Rev. Lett. 2018, 121, 129901. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015, Erratum in Phys. Rev. X 2018, 8, 039903. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101, Erratum in Phys. Rev. Lett. 2018, 121, 129902. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett. 2019, 875, L2. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett. 2019, 875, L3. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar] [CrossRef]
- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 1916, 189–196. [Google Scholar]
- Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik 1916, 355, 106–120. [Google Scholar] [CrossRef]
- Nordström, G. On the Energy of the Gravitation field in Einstein’s Theory. K. Ned. Akad. Van Wet. Proc. Ser. Phys. Sci. 1918, 20, 1238–1245. [Google Scholar]
- Turimov, B.; Alibekov, H.; Tadjimuratov, P.; Abdujabbarov, A. Gravitational synchrotron radiation and Penrose process in STVG theory. Phys. Lett. B 2023, 843, 138040. [Google Scholar] [CrossRef]
- Zakharov, A. New Astron. 10, 479 (2005); AF Zakharov, F. De Paolis, G. Ingrosso, and AA Nucita. Astron. Astrophys. 2005, 442, 795. [Google Scholar] [CrossRef]
- Zakharov, A.F. Constraints on tidal charge of the supermassive black hole at the Galactic Center with trajectories of bright stars. Eur. Phys. J. C 2018, 78, 689. [Google Scholar] [CrossRef] [PubMed]
- Prokopov, V.; Alexeyev, S. Shadow from a rotating black hole in an extended gravity. Int. J. Mod. Phys. A 2020, 35, 2040060. [Google Scholar] [CrossRef]
- Alexeyev, S.O.; Latosh, B.N.; Prokopov, V.A.; Emtsova, E.D. Phenomenological Extension for Tidal Charge Black Hole. J. Exp. Theor. Phys. 2019, 128, 720–726. [Google Scholar] [CrossRef]
- Bardeen, J. In Proceedings of the GR5; DeWitt, C., DeWitt, B., Eds.; USSR, Gordon and Breach: Tbilisi, Georgia, 1968; p. 174. [Google Scholar]
- Ayón-Beato, E.; García, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 1999, 464, 25. [Google Scholar] [CrossRef]
- Wang, A.; Maartens, R. Cosmological perturbations in Horava-Lifshitz theory without detailed balance. Phys. Rev. D 2010, 81, 024009. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Schee, J.; Ahmedov, B. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 2018, 97, 084058. [Google Scholar] [CrossRef]
- Johannsen, T.; Psaltis, D. Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: I. Properties of a Quasi-Kerr Spacetime. Astrophys. J. 2010, 716, 187–197. [Google Scholar] [CrossRef]
- Johannsen, T.; Psaltis, D. Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 2011, 83, 124015. [Google Scholar] [CrossRef]
- Rezzolla, L.; Zhidenko, A. New parametrization for spherically symmetric black holes in metric theories of gravity. Phys. Rev. D 2014, 90, 084009. [Google Scholar] [CrossRef]
- Yunes, N.; Pretorius, F. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework. Phys. Rev. D 2009, 80, 122003. [Google Scholar] [CrossRef]
- Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating non-Kerr black hole. Phys. Rev. D 2013, 88, 064004. [Google Scholar] [CrossRef]
- Hakimov, A.; Atamurotov, F. Gravitational lensing by a non-Schwarzschild black hole in a plasma. Astrophys. Space Sci. 2016, 361, 112. [Google Scholar] [CrossRef]
- Rayimbaev, J.; Turimov, B.; Marcos, F.; Palvanov, S.; Rakhmatov, A. Particle acceleration and electromagnetic field of deformed neutron stars. Mod. Phys. Lett. A 2019, 35, 2050056. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.; Jing, J. Rotating non-Kerr black hole and energy extraction. Astrophys. J. 2012, 751, 148. [Google Scholar] [CrossRef]
- Jiang, J.; Bambi, C.; Steiner, J.F. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes. J. Cosmol. Astropart. Phys. 2015, 5, 025. [Google Scholar] [CrossRef]
- Liu, D.; Li, Z.; Bambi, C. Testing a class of non-Kerr metrics with hot spots orbiting SgrA*. J. Cosmol. Astropart. Phys. 2015, 1, 020. [Google Scholar] [CrossRef]
- Bambi, C. Measuring the Kerr spin parameter of a non-Kerr compact object with the continuum-fitting and the iron line methods. J. Cosmol. Astropart. Phys. 2013, 8, 055. [Google Scholar] [CrossRef]
- Bambi, C. A code to compute the emission of thin accretion disks in non-Kerr space-times and test the nature of black hole candidates. Astrophys. J. 2012, 761, 174. [Google Scholar] [CrossRef]
- Rayimbaev, J.; Narzilloev, B.; Abdujabbarov, A.; Ahmedov, B. Dynamics of Magnetized and Magnetically Charged Particles around Regular Nonminimal Magnetic Black Holes. Galaxies 2021, 9, 71. [Google Scholar] [CrossRef]
- Narzilloev, B.; Rayimbaev, J.; Abdujabbarov, A.; Ahmedov, B. Regular Bardeen Black Holes in Anti-de Sitter Spacetime versus Kerr Black Holes through Particle Dynamics. Galaxies 2021, 9, 63. [Google Scholar] [CrossRef]
- Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Dynamics and fundamental frequencies of test particles orbiting Kerr–Newman–NUT–Kiselev black hole in Rastall gravity. Eur. Phys. J. Plus 2021, 136, 1032. [Google Scholar] [CrossRef]
- Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B. Optical properties of an axially symmetric black hole in the Rastall gravity. Eur. Phys. J. Plus 2022, 137, 645. [Google Scholar] [CrossRef]
- Rahim, R.; Saifullah, K. Charging the Johannsen—Psaltis spacetime. Ann. Phys. 2019, 405, 220–233. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Banerjee, R.; Ranjan Majhi, B. Quantum tunneling beyond semiclassical approximation. J. High Energy Phys. 2008, 2008, 095. [Google Scholar] [CrossRef]
- Nucamendi, U.; Herrera-Aguilar, A.; Lizardo-Castro, R.; Cruz, O.L. Toward the Gravitational Redshift Detection in NGC 4258 and the Estimation of Its Black Hole Mass-to-distance Ratio. Astrophys. J. Lett. 2021, 917, L14. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Villalobos-Ramirez, A.; Gallardo-Rivera, O.; Herrera-Aguilar, A.; Nucamendi, U. A general relativistic estimation of the black hole mass-to-distance ratio at the core of TXS 2226–184. Astron. Astrophys. 2022, 662, L9. [Google Scholar] [CrossRef]
- Villaraos, D.; Herrera-Aguilar, A.; Nucamendi, U.; González-Juárez, G.; Lizardo-Castro, R. A general relativistic mass-to-distance ratio for a set of megamaser AGN black holes. Mon. Not. R. Astron. Soc. 2022, 517, 4213–4219. [Google Scholar] [CrossRef]
- Villalobos-Ramírez, A.; González-Juárez, A.; Momennia, M.; Herrera-Aguilar, A. A general relativistic mass-to-distance ratio for a set of megamaser AGN black holes II. arXiv 2022, arXiv:2211.06486. [Google Scholar]
- Banerjee, P.; Herrera-Aguilar, A.; Momennia, M.; Nucamendi, U. Mass and spin of Kerr black holes in terms of observational quantities: The dragging effect on the redshift. Phys. Rev. D 2022, 105, 124037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibekov, H.; Narzilloev, B.; Abdujabbarov, A.; Ahmedov, B. Frequency Shift of Photons in the Spacetime of Deformed RN BH. Symmetry 2023, 15, 1414. https://doi.org/10.3390/sym15071414
Alibekov H, Narzilloev B, Abdujabbarov A, Ahmedov B. Frequency Shift of Photons in the Spacetime of Deformed RN BH. Symmetry. 2023; 15(7):1414. https://doi.org/10.3390/sym15071414
Chicago/Turabian StyleAlibekov, Husan, Bakhtiyor Narzilloev, Ahmadjon Abdujabbarov, and Bobomurat Ahmedov. 2023. "Frequency Shift of Photons in the Spacetime of Deformed RN BH" Symmetry 15, no. 7: 1414. https://doi.org/10.3390/sym15071414
APA StyleAlibekov, H., Narzilloev, B., Abdujabbarov, A., & Ahmedov, B. (2023). Frequency Shift of Photons in the Spacetime of Deformed RN BH. Symmetry, 15(7), 1414. https://doi.org/10.3390/sym15071414