Surface Pressure Calculation Method of Multi-Field Coupling Mechanism under the Action of Flow Field
<p>Mathematical logic for strong and weak coupling calculations.</p> "> Figure 2
<p>Comparison and inadequacy of strong and weak coupling calculation methods.</p> "> Figure 3
<p>Pressure curves when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <msup> <mn>5</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 4
<p>Pressure curves when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 5
<p>Pressure curves when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msup> <mn>4</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Pressure curves when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msup> <mn>7</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 7
<p>Pressure curves when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msup> <mn>10</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 8
<p>The results of Ejeh C. J. [<a href="#B57-symmetry-15-01064" class="html-bibr">57</a>]. (<b>a</b>) Curves of lift, drag and momentum coefficient at varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>b</b>) Lift-to-drag ratio at varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>c</b>) Lift coefficient at different <math display="inline"><semantics> <mi>α</mi> </semantics></math> and varying time. (<b>d</b>) Drag coefficient at different <math display="inline"><semantics> <mi>α</mi> </semantics></math> and varying time.</p> "> Figure 9
<p>The influence of the number of ellipsoid calculation grids on the calculation quality with different angles of attack.</p> "> Figure 10
<p>The distribution of the vortex on the sphere’s surface (Re = 40, 100).</p> "> Figure 11
<p>Comparison of the pressure distribution on an ellipsoid’s surface calculated using this method and Lyona’s experiment [<a href="#B59-symmetry-15-01064" class="html-bibr">59</a>].</p> "> Figure 12
<p>Lift coefficient curves when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>4.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 13
<p>Drag coefficient curves when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>4.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Basics for Tensor Operation
3. Generalized Operator and Fundamental Solution for Navier–Stokes Equations
3.1. Navier–Stokes Equations
3.2. Generalized Operator
3.3. Fundamental Solution of Generalized Operator
4. Direct Integral Expression of Generalized Operator for Navier–Stokes Equations
5. Discrete Form of the Boundary Integral Equation
6. Results
6.1. Analysis of Results
6.2. Discussion of Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fourey, G.; Oger, G.; Touzé, D.; Alessandrini, B. Violent fluid-structure interaction simulations using a coupled SPH/FEM method. IOP Conf. Ser. Mater. Sci. Eng. IOP Publ. 2010, 10, 012041. [Google Scholar] [CrossRef]
- Xiang, V.; Milthaler, F.; Farrell, P.; Piggott, M.; Latham, J.; Pavlidis, D.; Pain, C. Modelling of fluid–solid interactions using an adaptive mesh fluid model coupled with a combined finite–discrete element model. Ocean Dyn. 2012, 62, 1487–1501. [Google Scholar]
- Boffi, D.; Gastaldi, L. A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 2017, 135, 711–732. [Google Scholar] [CrossRef]
- Massing, A.; Schott, B.; Wall, W. A stabilized Nitsche cut finite element method for the Oseen problem. Comput. Methods Appl. Mech. Eng. 2018, 328, 262–300. [Google Scholar] [CrossRef]
- Tezduyar, T.E.; Sathe, S. Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int. J. Numer. Methods Fluids 2007, 54, 855–900. [Google Scholar] [CrossRef]
- Gil, A.; Carre, A.; Bonet, J.; Hassan, O. The immersed structural potential method for haemodynamic applications. J. Comput. Phys. 2010, 229, 8613–8641. [Google Scholar] [CrossRef]
- Kamensky, D.; Hsu, M.; Schillinger, D.; Evans, J.; Aggarwal, A.; Bazilevs, Y.; Sacks, M.; Hughes, T. An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 2015, 284, 1005–1053. [Google Scholar] [CrossRef]
- Balmus, M.; Massing, A.; Hoffman, J.; Razavi, R.; Nordsletten, D. A partition of unity approach to fluid mechanics and fluid-structure interaction. Appl. Mech. Eng. 2020, 362, 112842. [Google Scholar] [CrossRef]
- Rakhshaa, M.; Pazoukib, A.; Serbana, R.; Negruta, D. Using a half-implicit integration scheme for the SPH-based solution of fluid–solid interaction problems. Comput. Methods Appl. Mech. Eng. 2019, 345, 38–47. [Google Scholar] [CrossRef]
- Akinci, N.; Ihmsen, M.; Akinci, G.; Solenthaler, B.; Teschner, M. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 2012, 31, 62:1–62:8. [Google Scholar] [CrossRef]
- Saeed, K.; Akram, S.; Ahmad, A.; Athar, M.; Razia, A.; Muhammad, T. Impact of slip boundaries on double diffusivity convection in an asymmetric channel with magneto-tangent hyperbolic nanofluid with peristaltic flow. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 2023, 103, e202100338. [Google Scholar] [CrossRef]
- Storti, M.; Nigro, N.; Paz, R.; Dalcin, L. Strong coupling strategy for fluid–structure interaction problems in supersonic regime via fixed point iteration. J. Sound Vib. 2009, 320, 859–877. [Google Scholar] [CrossRef]
- Yang, D.; Wunenboyn, H.; Yang, J. Boundary Element Method of Stationary Viscous Incompressible Flow with Axial Symmetry. In Computational Mechanics’95: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1995; pp. 2981–2986. [Google Scholar]
- Huang, Q.; Zheng, X.; Yao, Z. Boundary element method for 2D solids with fluid-filled pores. Eng. Anal. Bound. Elem. 2011, 35, 191–199. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, R.; Zhou, W.; Zhao, J. A 3D multi-domain high order boundary element method to evaluate time domain motions and added resistance of ship in waves. Ocean. Eng. 2018, 159, 112–128. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, R.; Chen, X.; Hong, L. Vertical integral method incoporated with multi-domain HOBEM for time domain calculation of hydrodynamics of forward speed SHIP. Appl. Ocean Res. 2020, 94, 101997. [Google Scholar] [CrossRef]
- Zhu, J. Boundary Element Analysis for Elliptic Boundary Value Problem; Science Press: Beijing, China, 1991. [Google Scholar]
- Nardini, D.; Brebbia, C. Dynamic analysis in solid mechanics by an alternative boundary element procedure. Eng. Anal. Bound. Elem. 2000, 24, 513–518. [Google Scholar]
- Power, H.; Florez, W. Muti-domain DRM BEM for the numerical simulation of non-isothermal Newtonian and non-Newtonian flow problems. WIT Trans. State Art Sci. Eng. 2007, 14, 69–98. [Google Scholar]
- Gao, X.W. The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng. Anal. Bound. Elem. 2002, 26, 905–916. [Google Scholar] [CrossRef]
- Gao, X.W. An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals. Comput. Methods Appl. Mech. Eng. 2010, 199, 2856–2864. [Google Scholar] [CrossRef]
- Greengard, L.; Jiang, S. A new mixed potential representation for the equations of unsteady, incompressible flow. SIAM Rev. 2019, 61, 733–755. [Google Scholar] [CrossRef]
- Li, X.L.; Fu, D.X.; Ma, Y.W.; Liang, X. Direct numerical simulation of compressible turbulent flows. Acta Mech. Sin. 2010, 26, 795–806. [Google Scholar] [CrossRef]
- Rapaka, N.; Samtaney, R. An efficient Poisson solver for complex embedded boundary domains using the multi-grid and fast multipole methods. JCP J. Comput. Phys. 2020, 410, 23–36. [Google Scholar] [CrossRef]
- Ho, I.; So, C. Coupled 3D neutron kinetics/thermal-hydraulics calculation of PWR core using nodal Green’s function method on Neumann boundary condition. PNE Prog. Nucl. Energy 2020, 123, 65–79. [Google Scholar] [CrossRef]
- Mehta, U.B.; Lavan, Z. Starting vortex, separation bubbles and stall: A numerical study of laminar unsteady flow around an airfoil. J. Fluid Mech. 1975, 67, 227–256. [Google Scholar] [CrossRef]
- Yue, P.; Xiao, J.; Xu, K.; Li, M.; Jiang, F.; Lu, Y.; Peng, D. Mathematical model and analysis method for flowfield separation and transition. Phys. Fluids 2021, 33, 044116. [Google Scholar] [CrossRef]
- Katopodes, N.D. Viscous fluid flow. Free.-Surf. Flow Environ. Fluid Mech. 2019, 5, 324C426. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1947. [Google Scholar]
- Yang, Y.; Wen, S.-B. A new high accuracy meshfree method to directly simulate fluid dynamics and heat transfer of weakly compressible fluids. Int. J. Heat Mass Transf. 2018, 123, 25C39. [Google Scholar] [CrossRef]
- Jackson, H. A fast numerical scheme for the GodunovCPeshkovCRomenski model of continuum mechanics. J. Comput. Phys. 2017, 348, 514C533. [Google Scholar] [CrossRef]
- Feng, X.; Liang, L. Lagrange equation applied to continuum mechanics. J. Peking Univ. (Nat. Sci. Ed.) 2016, 52, 597C607. [Google Scholar]
- Liang, L.; Guo, Q.; Song, H. Dynamics of continuum analysis and its applications. Adv. Mech. 2019, 49, 514C541. [Google Scholar]
- Rostamzadeh, A.; Razavi, S.E.; Mirsajedi, S.M. Towards multidimensional artificially characteristic-based scheme for incompressible thermo-fluid problems. Mechanics 2017, 23, 826–834. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, P.; Wei, S. Extension of Calculus Operations in Cartesian Tensor Analysis. Mathematics 2020, 8, 561. [Google Scholar] [CrossRef]
- Vectors, A.R. Tensors and the Basic Equations of Fluid Mechanics; Courier Corporation: Chelmsford, UK, 2012. [Google Scholar]
- Ding, W.; Luo, Z.; Qi, L. P-tensors, P0-tensors, and tensor complementarity problem. Linear Algebra Appl. 2018, 555, 336–354. [Google Scholar] [CrossRef]
- Xie, S.-L.; Li, D.-H.; Xu, H.-R. An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 2017, 175, 119C136. [Google Scholar] [CrossRef]
- Kelmanson, M.A. Boundary integral equation solution of viscous flows with free surfaces. J. Eng. Math. 1983, 17, 329C343. [Google Scholar] [CrossRef]
- Schippers, H. Multiple Grid Methods for Equations of the Second Kind with Applications in Fluid Mechanics. Master’s Thesis, Mathematisch Centrum, Amsterdam, The Netherlands, 1982. [Google Scholar]
- Runge, E.; Gross, E.K. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Benchohra, M.; Nieto, J.J.; Ouahab, A. Second-order boundary value problem with integral boundary conditions. Bound. Value Probl. 2011, 2011, 260309. [Google Scholar] [CrossRef]
- Cabada, A.; Wang, G. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389, 403–411. [Google Scholar] [CrossRef]
- Yamaguchi, H. Engineering Fluid Mechanics; Springer Science and Business Media: Berlin, Germany, 2008. [Google Scholar]
- Ahmed, N.; Bartsch, C.; John, V.; Wilbrandt, U. An assessment of some solvers for saddle point problems emerging from the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 2018, 331, 492–513. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications; Springer Science and Business Media: New York, NY, USA, 2012; Volume 75. [Google Scholar]
- Shilt, T.; O’Hara, P.J.; Deshmukh, R.; McNamara, J.J. Solution of nearly incompressible field problems using a generalized finite element approach. Comput. Methods Appl. Mech. Eng. 2020, 368, 113165. [Google Scholar] [CrossRef]
- Lebedev, L.P.; Cloud, M.J.; Eremeyev, V.A. Tensor Analysis with Applications in Mechanics; World Scientific: Singapore, 2010. [Google Scholar]
- Wiener, J. Generalized-function solutions of differential and functional differential equations. J. Math. Anal. Appl. 1982, 88, 170–182. [Google Scholar] [CrossRef]
- Flandoli, F.; Russo, F. Generalized integration and stochastic ODEs. Ann. Probab. 2002, 30, 270–292. [Google Scholar] [CrossRef]
- Borisenko, A.I. Vector and Tensor Analysis with Applications; Courier Corporation: North Chelmsford, MA, USA, 1968. [Google Scholar]
- Odzijewicz, T.; Malinowska, A.; Torres, D. Greens theorem for generalized fractional derivatives. Fract. Calc. Appl. Anal. 2013, 16, 64–75. [Google Scholar] [CrossRef]
- Xu, K.; Yue, P.; Liu, Q.; Liu, C.; Lu, Y.; Zhang, J. Numerical implementation of boundary element method for determining aerodynamic characteristics around airfoil system by viscous media. AIP Adv. 2020, 10, 055126. [Google Scholar]
- Hu, Y.; He, Q.; Li, D.; Li, Y.; Niu, X. On the total mass conservation and the volume preservation in the diffuse interface method. Comput. Fluids 2019, 193, 104291. [Google Scholar] [CrossRef]
- Kanth, A.S.R.; Reddy, Y.N. The method of inner boundary condition for singular boundary value problems. Appl. Math. Comput. 2003, 139, 429–436. [Google Scholar]
- Sumbatyan, M.A.; Tarasov, A.E. A mathematical model for the propulsive thrust of the thin elastic wing harmonically oscillating in a flow of non-viscous incompressible fluid. Mech. Res. Commun. 2015, 68, 83C88. [Google Scholar] [CrossRef]
- Ejeh, C.J.; Akhabue, G.P.; Boah, E.A.; Tandoh, K.K. Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics. Results Eng. 2019, 4, 100037. [Google Scholar] [CrossRef]
- Belotserkovsky, O.M.; Shevelev, Y.D.; Maksimov, F.A. A flow about delta wings at various Reynolds numbers. In Proceedings of the 2000 2nd International Conference. Control of Oscillations and Chaos, Proceedings (Cat. No. 00TH8521), St. Petersburg, Russia, 5–7 July 2000; Volume 3, p. 592. [Google Scholar]
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: New York, NY, USA, 2015. [Google Scholar]
- Ladopoulos, E.G. Non-linear multidimensional singular integral equations in two-dimensional fluid mechanics. Int. J. Non-Linear Mech. 2000, 35, 701–708. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wei, S.; Yue, P.; Kulik, A.S.; Li, G. Surface Pressure Calculation Method of Multi-Field Coupling Mechanism under the Action of Flow Field. Symmetry 2023, 15, 1064. https://doi.org/10.3390/sym15051064
Zhang J, Wei S, Yue P, Kulik AS, Li G. Surface Pressure Calculation Method of Multi-Field Coupling Mechanism under the Action of Flow Field. Symmetry. 2023; 15(5):1064. https://doi.org/10.3390/sym15051064
Chicago/Turabian StyleZhang, Jinghui, Sibei Wei, Peng Yue, Anatoliy Stepanovich Kulik, and Gun Li. 2023. "Surface Pressure Calculation Method of Multi-Field Coupling Mechanism under the Action of Flow Field" Symmetry 15, no. 5: 1064. https://doi.org/10.3390/sym15051064
APA StyleZhang, J., Wei, S., Yue, P., Kulik, A. S., & Li, G. (2023). Surface Pressure Calculation Method of Multi-Field Coupling Mechanism under the Action of Flow Field. Symmetry, 15(5), 1064. https://doi.org/10.3390/sym15051064